Цементит — структурная составляющая железоуглеродистых сплавов


Что представляет собой цемент

С латинского «caementum» переводится как щебень или битый камень. Этот порошкообразный материал является искусственно созданным вяжущим, состоящим из клинкера, определенного количества гипса, минеральных добавок и различных наполнителей. При затворении цемента водой или другими жидкостями, образуется пластичная масса, способная при затвердевании превращаться в камневидное тело.

Цемент является основной составляющей бетонного и цементно-песчаного раствора. Он обладает уникальной способностью набирать свою прочность при воздействии влаги, чего не скажешь о гипсе или воздушной извести, твердеющих в сухих условиях.

Интересен тот факт, что еще древние римляне к извести подмешивали вулканический пепел или дробленый камень. Это можно считать началом истории появления цемента.

Основные структуры

Сплав железа и углерода является основой стали и чугуна, которые называются железными сплавами, и это самые важные конструкционные материалы в технологии.

Структура и свойства сплава во многом зависят от характеристик основных компонентов и аддитивных элементов, а также характера их взаимодействия.

Чистое железо-серебристо-белый металл, тугоплавкий. Температура плавления железа составляет 1539°C. железо имеет 2 полиморфные модификации a и G.

  • При температурах ниже 910°C железо имеет объемно-центрированную кубическую решетку. Это изменение называется A-iron. а-железо-это температура до 768°С (точка Кюри) магнитно.

Когда утюг нагрет, тел-центризованная кубическая решетка 910°С поворачивает в сторон-центризованную кубическую решетку, и А-утюг поворачивает в г-утюг. г-железо присутствует при температуре 910-1392°с

Углерод-неметаллический элемент. Температура плавления углерода составляет 3500°С. углерод в природе существует в 2 полиморфных модификациях: Алмаз и графит.

Форма алмаза не найдена в сплаве.

В сплаве свободный углерод-железо углерод находится в форме графита. Кристаллическая структура графита слоистая. Его прочность и пластичность очень низки.

Углерод может растворяться в железе в жидком и твердом состоянии, образуя химические соединения-цементит может находиться в свободной форме в виде графита.

Металлургия

Орторомбический Fe 3 C. Атомы железа голубые.

Фазовая диаграмма железо-углерод

В системе железо-углерод (например, углеродистые стали и чугуны ) он является обычным компонентом, поскольку феррит может содержать не более 0,02 мас.% Несвязанного углерода. Следовательно, в углеродистых сталях и чугунах, которые медленно охлаждаются, часть углерода находится в форме цементита. Цементит образуется непосредственно из расплава в случае белого чугуна . В углеродистой стали цементит выделяется из аустенита, когда аустенит превращается в феррит при медленном охлаждении, или из мартенсита во время отпуска . Тесная смесь с ферритом, другим продуктом аустенита, образует пластинчатую структуру, называемую перлитом .

Хотя цементит термодинамически нестабилен и в конечном итоге превращается в аустенит (низкий уровень углерода) и графит (высокий уровень углерода) при более высоких температурах, он не разлагается при нагревании при температурах ниже температуры (723 ° C) на метастабильном железоуглеродистом состоянии. фазовая диаграмма.

Сплавы железа с углеродом

Железоуглеродистые сплавы могут содержать следующие структурные компоненты:

  • Феррит (F) представляет собой твердый раствор, содержащий углерод и другие элементы в iron. It имеет объемно-центрированную кубическую решетку. Растворимость углерода в феррите очень мала, до 0,005% при комнатной температуре. При 727°C, самая высокая растворимость 0,02% феррита очень пластична, мягка и обрабатывается путем приложения давления в холодных условиях.

Аустенит (а) представляет собой твердый раствор углерода и других элементов G-iron. It присутствует только при высоких температурах. максимальная растворимость углерода в г-железе составляет 1147% при температуре 2,14°С и 727 ° с при 0,8%.Эта температура является нижним пределом присутствия аустенита в железоуглеродистом сплаве. Аустенит очень пластичен, но тверже феррита.

Чистая форма

Цементит меняется с ферромагнитный к парамагнитный на своем Температура Кюри примерно 480 К.

Зависимость мольного объема цементита от давления при комнатной температуре.

Карбид природного железа (содержащий незначительное количество никеля и кобальта) встречается в железные метеориты и называется когенит в честь немецкого минералога Эмиль Коэн, который первым описал это. Поскольку углерод является одним из возможных второстепенных компонентов легких сплавов металлических ядер планет, свойства цементита (Fe3C) как простой заменитель когенита изучаются экспериментально. На рисунке показано поведение при сжатии при комнатной температуре.

Компоненты в системе «железо-углерод»

Компонентами железоуглеродистых сплавов являются железо, углерод и цементит:

Железо

Железо – d-переходный металл серебристо-светлого цвета. Температура плавления – 1539° С. Удельный вес равен 7,86 г/см3. Наиболее существенной особенностью железа является его полиморфизм. В твердом состоянии железо может находиться в двух модификациях — α и γ. Полиморфные превращения происходят при температурах 911° С и 1392° С. При температуре ниже 911° С и выше 1392° С существует Feα (или α-Fе) с объемно-центрированной кубической решеткой. В интервале температур 911…1392° С устойчивым является Feγ (или γ-Fе) с гранецентрированной кубической решеткой. При превращении α→γ наблюдается уменьшение объема, так как решетка γ-Fе имеет более плотную упаковку атомов, чем решетка α-Fе. При охлаждении во время превращения γ→α наблюдается увеличение объема. В интервале температур 1392…1539° С высокотемпературное Feα называют Feδ. Высокотемпературная модификация Feα не представляет собой новой аллотропической формы.

При температуре ниже 768° С железо ферромагнитно, а выше – парамагнитно. Точку 768° С, соответствующую магнитному превращению, т.е. переходу из ферромагнитного состояния в парамагнитное называют точкой Кюри. Модификация Feγ парамагнитна.

Железо технической чистоты обладает невысокой твердостью (80 НВ) и прочностью (временное сопротивление – σв=250 МПа, предел текучести – σт=120 МПа) и высокими характеристиками пластичности (относительное удлинение – δ=50 %, а относительное сужение – ψ=80 %). Свойства могут изменяться в некоторых пределах в зависимости от величины зерна. Железо характеризуется высоким модулем упругости, наличие которого проявляется и в сплавах на его основе, обеспечивая высокую жесткость деталей из этих сплавов.

Железо со многими элементами образует растворы: с металлами – растворы замещения, с углеродом, азотом и водородом – растворы внедрения.

Углерод

Углерод относится к неметаллам. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристаллической решеткой (температура плавления – 3500° С, плотность – 2,5 г/см3) или в форме алмаза со сложной кубической решеткой с координационным числом равным четырем (температура плавления – 5000° С).

В сплавах железа с углеродом углерод находится в состоянии твердого раствора с железом и в виде химического соединения – цементита (Fe3C), а также в свободном состоянии в виде графита (в серых чугунах).

Цементит

Цементит (Fe3C) – химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода. Более точные исследования показали, что цементит может иметь переменную концентрацию углерода. Однако в дальнейшем, при разборе диаграммы состояния, сделаем допущение, что Fе3С имеет постоянный состав. Кристаллическая решетка цементита ромбическая, удельный вес 7,82 г/см3 (очень близок к удельному весу железа). При высоких температурах цементит диссоциирует, поэтому температура его плавления неясна и проставляется ориентировочно – 1260° С. Аллотропических превращений не испытывает. Кристаллическая решетка цементита состоит из ряда октаэдров, оси которых наклонены друг к другу. При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 210° С. Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность.

Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов: например, азотом; атомы железа – металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.

Если графит является стабильной фазой, то цементит – это метастабильная фаза. Цементит – соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов.

Отрывок, характеризующий Цементит

Люди русского войска были так измучены этим непрерывным движением по сорок верст в сутки, что не могли двигаться быстрее. Чтобы понять степень истощения русской армии, надо только ясно понять значение того факта, что, потеряв ранеными и убитыми во все время движения от Тарутина не более пяти тысяч человек, не потеряв сотни людей пленными, армия русская, вышедшая из Тарутина в числе ста тысяч, пришла к Красному в числе пятидесяти тысяч. Быстрое движение русских за французами действовало на русскую армию точно так же разрушительно, как и бегство французов. Разница была только в том, что русская армия двигалась произвольно, без угрозы погибели, которая висела над французской армией, и в том, что отсталые больные у французов оставались в руках врага, отсталые русские оставались у себя дома. Главная причина уменьшения армии Наполеона была быстрота движения, и несомненным доказательством тому служит соответственное уменьшение русских войск. Вся деятельность Кутузова, как это было под Тарутиным и под Вязьмой, была направлена только к тому, чтобы, – насколько то было в его власти, – не останавливать этого гибельного для французов движения (как хотели в Петербурге и в армии русские генералы), а содействовать ему и облегчить движение своих войск. Но, кроме того, со времени выказавшихся в войсках утомления и огромной убыли, происходивших от быстроты движения, еще другая причина представлялась Кутузову для замедления движения войск и для выжидания. Цель русских войск была – следование за французами. Путь французов был неизвестен, и потому, чем ближе следовали наши войска по пятам французов, тем больше они проходили расстояния. Только следуя в некотором расстоянии, можно было по кратчайшему пути перерезывать зигзаги, которые делали французы. Все искусные маневры, которые предлагали генералы, выражались в передвижениях войск, в увеличении переходов, а единственно разумная цель состояла в том, чтобы уменьшить эти переходы. И к этой цели во всю кампанию, от Москвы до Вильны, была направлена деятельность Кутузова – не случайно, не временно, но так последовательно, что он ни разу не изменил ей. Кутузов знал не умом или наукой, а всем русским существом своим знал и чувствовал то, что чувствовал каждый русский солдат, что французы побеждены, что враги бегут и надо выпроводить их; но вместе с тем он чувствовал, заодно с солдатами, всю тяжесть этого, неслыханного по быстроте и времени года, похода. Но генералам, в особенности не русским, желавшим отличиться, удивить кого то, забрать в плен для чего то какого нибудь герцога или короля, – генералам этим казалось теперь, когда всякое сражение было и гадко и бессмысленно, им казалось, что теперь то самое время давать сражения и побеждать кого то. Кутузов только пожимал плечами, когда ему один за другим представляли проекты маневров с теми дурно обутыми, без полушубков, полуголодными солдатами, которые в один месяц, без сражений, растаяли до половины и с которыми, при наилучших условиях продолжающегося бегства, надо было пройти до границы пространство больше того, которое было пройдено.

Диаграмма состояния

ЛинияABCD является ликвидусом системы, линияAHJECF — солидусом.

Так как железо, кроме того, что образует с углеродом химическое соединение Fe3C, имеет две аллотропические формы α и γ, то в системе существуют следующие фазы:

жидкость (жидкий раствор углерода в железе), существующая выше линии ликвидус, обозначаемая везде буквой L;

цементит Fe3C — линия DFKL, обозначаемая в дальнейшем химической формулой или буквой Ц;

феррит — структурная составляющая, представляющая собой α-железо, которое в незначительном количестве растворяет углерод; обозначается буквой Ф, α или α-Fe. Область феррита в системе железо — углерод расположена левее линии GPQ и AHN;

аустенит — структура, представляющая собой твердый раствор углерода в γ-железе. Область аустенита на диаграмме — NJESG. Обозначается аустенит А, или γ-Fe.

Три горизонтальные линии на диаграмме (HJB,ECF и PSK) указывают на протекание трех нонвариантных реакций.

При 1499 °С (линия HJB) протекает перитектическая реакция:

В результате перитектической реакции образуется аустенит. Реакция эта наблюдается только у сплавов, содержащих углерода от 0,1 до 0,5%. При 1147 °С (горизонтальECF) протекает эвтектическая реакция:

В результате этой реакции образуется эвтектическая смесь. Эвтектическая смесь аустенита и цементита называетсяледебуритом (немецкий ученый Ледебур)

Реакция эта происходит у всех сплавов системы, содержащих углерода более 2,14 %.

При 727 °С (горизонталь PSK) протекает эвтектоидная реакция

Продуктом превращения является эктектоидная смесь. Эвтектоидная смесь феррита и цементита называется перлитом,имеет вид перламутра, почему эта структура и получила такое название.

У всех сплавов, содержащих свыше 0,02 % углерода, т. е. практически у всех промышленных железоуглеродистых сплавов, происходит перлитное (эвтектоидное) превращение.

Различают три группы сталей: эвтектоидные, содержащие около 0,8%С, структура которых состоит только из перлита; доэвтектоидные, содержащие меньше 0,8 % С. структура котопых состоит из феррита и перлита, и заэвтектоидные, содержащие от 0,8 до 2,14 %С, структура которых состоит из перлита и цементита.

Ссылки [ править ]

  1. ^ a b Смит и Хашеми 2006 , стр. 363
  2. Дюран-Шарр 2003ошибка harvnb: цель отсутствует: CITEREFDurand-Charre2003 ( справка )
  3. HKDH Bhadeshia (2020). «Цементит» . Международные обзоры материалов
    .
    65
    (1): 1-27. DOI : 10.1080 / 09506608.2018.1560984 .
  4. Ashrafzadeh, Milad; Солеймани, Амир Пейман; Панджепур, Масуд; Шаманян, Мортеза (2015). «Образование цементита из смеси гематит-графит путем одновременной термо-механической активации» . Металлургические и Транзакция материалов B
    .
    46
    (2): 813–823. DOI : 10.1007 / s11663-014-0228-3 . S2CID 98253213 .
  5. Smith & Хашеми 2006 , стр. 366-372
  6. SWJ Smith; W. White; С. Г. Баркер (1911). «Температура магнитного перехода цементита» . Proc.Phys.Soc.Лондон
    .
    24
    (1): 62–69. DOI : 10.1088 / 1478-7814 / 24/1/310 .
  7. Vagn F. Бухвальд, Справочник по железным метеоритам, Калифорнийский университет Press 1975
  8. Гуннар Хэгг, З. Крист.
    , Vol. 89, с. 92-94, 1934.
  9. Смит, Уильям Ф. (1981). Структура и свойства инженерных сплавов
    . Нью-Йорк: Макгроу-Хилл. С. 61–62. ISBN 978-0-07-0585607.
  10. Mannix, Лиам (2019-08-31). «Этот метеорит пришел из ядра другой планеты. Внутри него новый минерал» . Возраст
    . Проверено 14 сентября 2022 .

Свободный цементит

Свободный цементит ( Fe3C), который образуется при недостаточном количестве кремния, слишком большом содержаний марганца и серы.

Структурно свободный цементит нежелателен.

Структурно свободный цементит, X 500: а – до деформации, 6 – после деформации.

Разложение структурно свободного цементита достигается при нагреве и выдержке отливки выше критического интервала; температура нагрева и длительность выдержки зависят от состава белого чугуна по содержанию углерода ( фиг.

Количество структурно свободного цементита. Включения структурно свободного цементита, расположенные по границам зерен феррита ( фиг. Скоагулированные и расположенные внутри зерен феррита включения структурно свободного цементита менее опасны. Шкала построена по возрастанию размеров включений цементита и по развитию распределения его в виде сетки или цепочки.

Разложение структурно свободного цементита достигается при нагреве и выдержке отливки выше критического интервала; температура нагрева и длительность выдержки зависят от состава белого чугуна по содержанию углерода ( фиг.

Частицы структурно свободного цементита должны быть мелкими, по возможности равномерно рассеянными ( фиг. Мелкие частички цементита получаются при пониженных температурах смотки горячекатаной полосы в рулон, а крупные – при высоких, когда они успевают не – только выделиться из твердого раствора в феррите, но и достигнуть крупных размеров вследствие коагуляции и роста.

Количество структурно свободного цементита в стали определяется баллами по эталонным образцам микроструктур.

Кроме структурно свободного цементита, на границах ферритных зерен имеется еще третичный цементит. Помешать его выделению при конечной термической обработке нельзя, так как для этого листы для глубокой вытяжки нужно охлаждать медленно.

Не допускается структурно свободный цементит. Эвтектический графит и феррит допускаются в виде отдельных мелких включений в количестве не более 5 % площади шлифа для каждого включения. Излом отливки должен иметь однородное мелкозернистое строение с матовым оттенком.

SE) имеющийся в ней свободный цементит до конца растворится в аустените и структура станет однородной.

В доэвтектоидных сталях нет структурно свободного цементита.

В) Чугуны со структурно свободным цементитом относятся к белым чугунам. Феррит в них может появиться в результате отжига, но такой чугун не относится к ферритным.

В низкоуглеродистой стали не допускается структурно свободный цементит. Он образуется в результате замедленного охлаждения после прокатки или термической обработки и, располагаясь по границам зерен, резко снижает пластические свойства. Это вызывает большой брак при холодной высадке.

Химические свойства

Как химическое соединение цементит обладает своими физическими, химическими и механическими характеристиками. Он имеет серый кристаллический вид на изломе, относительно твёрдый с высокой термической устойчивостью. Основные химические свойства цементита выражаются в следующих показателях:

  • химическая формула Fe3C;
  • разложение структуры происходит при температуре более 1650°С;
  • подвержен воздействию различных кислот (особенно высоко концентрированных);
  • быстро вступает в реакцию с кислородом.

На основании существующих химических свойств сформированы физические и механические свойства. К основным физическим свойствам относятся:

  • температура плавления равняется 1700 °С;
  • молекулярная масса составляет 179,55 а.е.м.;
  • плотность цементита равна 7,7 г/см3 при температуре равной 20 °С.

К основным механическим свойствам относятся:

  • твердость;
  • стойкость к ударным воздействиям (хрупкость);
  • сопротивление на излом;
  • пластичность.

Твёрдость этого соединения достигает больших значений и равна НВ 8000 МПа или HRC 70. Однако он обладает достаточной хрупкостью и низкой пластичностью.

Обладая перечисленными свойствами, цементит активно используется при производстве литых деталей различного назначения. Образование различного вида цементита и его соединений с другими формами приводит к изменению характеристик получаемой стали или чугуна, следовательно, к улучшению или снижению отдельных потребительских свойств.

Например, для получения белого чугуна и придания ему высокой прочности и пластичности стараются перевести цементит в графит. Это достигается при проведении операции отжига. При возрастании температуры он распадается на две составляющие: феррит и графит.

В зависимости от требуемых свойств в чугуне стараются сохранить требуемое количество цементита. Особенно это касается так называемого свободной фракции этого соединения. Для снижения его концентрации применяют различные способы химической и термической обработки. Для решения этой задачи применяют раствор азотной кислоты в чистом спирте. Структурно свободный цементит выпадает в осадок в результате кипячения чугунной болванки в этом растворе. Кроме этого применяют три вида обработки: отжиг, нормализацию и закалку.

Техническое железо содержит третичный цементит в сочетании с ферритом. Он проявляется по границе феррита при содержании углерода от 0,01% до 0,025%. Для повышения качества стали стараются снизить содержание свободного цементита. Особенно его концентрация наблюдается в мягких марках стали. Большое влияние на качество штамповки оказывает содержание этой смеси и перлита в единице объёма. Излишнее присутствие третичного цементита, особенно в форме продолжительной цепочки или сетки приводит к образованию разрывов во время штамповки. Поэтому для получения хорошей ковочной стали стараются снизить количество третичного цементита. Структура таких образований не должна превышать второго балла по установленной шкале. Получаемая твёрдость не должна превышать HB 50 единиц.

Чистое железо

Цементит © представляет собой соединение железа и углерода (fe3c) карбонизированного. Цементит содержит 6,67% углерода. Температура плавления цементита около 1600°С. Он имеет сложную кристаллическую решетку. Железо-самый твердый и хрупкий компонент углеродного сплава. Цементит неустойчив, при определенных условиях реакция Fe3C> 3Fe +С вызывает образование и разложение свободного углерода в виде графита.

Чем больше цементита в железоуглеродистом сплаве, тем выше твердость.

Графит является аллотропным вариантом углерода. Графит мягкий, и его прочность очень низкая. Чугун и графитизированная сталь входят в состав в виде включений различной формы.

Форма графитовых включений влияет на механические и технические свойства сплава.

Перлит (Р) представляет собой механическую смесь феррита и цементита, содержащую 0,8% углерода. Он образуется при перекристаллизации (коллапсе) аустенита при температуре 727°С. этот распад называется эвтектоидным, а перлит-эвтектоидным. Перлит обладает высокой прочностью, твердостью, что повышает механические свойства сплава.

  • Редебрит представляет собой механическую смесь аустенита и цементита, содержащую 4,3% углерода. Образуется в результате эвтектического превращения при температуре 1147 ° С. При температуре 727°с аустенит превращается в перлит, а после охлаждения красный брикет превращается в смесь перлита и цементита. Редебрит обладает высокой твердостью и превосходной хрупкостью. Все белое входит в состав чугуна.

Химические соединения

Основные структуры, составляющие железоуглеродистых сплавов:

Феррит представляет собой твердый раствор углерода в α-Fe. При температуре 723°C максимальное содержание углерода составляет 0.02%.It не вытравит если никакие примеси.

Цементит-соединение, содержащее углерод железа fe3c-6,67% карбида углерода. Эвтектика является неотъемлемой частью смеси и самостоятельным структурным компонентом. За счет замещения атомами других металлов может образовываться твердый раствор, который неустойчив и разлагается при термической обработке. Цементит очень твердых(НВ 800) и хрупок.

Аустенит представляет собой твердый раствор углерода в γ-Fe. Атомы углерода вводятся в кристаллическую решетку, и степень насыщения может варьироваться в зависимости от температуры и impurities. It устойчив только при высоких температурах, а стабилен даже при нормальных низких температурах-примеси Mn, Cr. Аустенитная твердость HB 170… 220.

Микроструктура:

  • а-гиперэвтектоидная сталь-феррит (светлая область) и перлит (темная область) с увеличением 500X, б-эвтектоидная сталь-перлит (1000′), в-эвтектоидная сталь-зацепляющийся перлит и цементит (200’).)
  • Растворимость углерода в феррите снижается с 727% при 0,02°с до 0,005% при комнатной температуре.

Описание

Концентрация углерода в цементите — 6,67% по массе — предельная для железоуглеродистых сплавов. Цементит — метастабильная фаза; образование стабильной фазы — графита во многих случаях затруднено. Цементит имеет орторомбическую кристаллическую решётку, очень твёрд и хрупок, слабо магнитен до 210 °C.
В зависимости от условий кристаллизации и последующей обработки цементит может иметь различную форму — равноосных зёрен, сетки по границам зёрен, пластин, а также видманштеттову структуру.

Цементит в разных количествах, в зависимости от концентрации, присутствует в железоуглеродистых сплавах уже при малых содержаниях углерода. Формируется в процессе кристаллизации из расплава чугуна. В сталях выделяется при охлаждении аустенита или при нагреве мартенсита. Цементит является фазовой и структурной составляющей железоуглеродистых сплавов, составной частью ледебурита, перлита, сорбита и троостита. Цементит — представитель так называемых фаз внедрения, соединений переходных металлов с лёгкими металлоидами. В фазах внедрения велики доля как ковалентной, так и металлической связи.

Твёрдость по Бринеллю больше 800 кг/мм2. Первичный цементит кристаллизуется из жидкого сплава Вторичный цементит — из аустенита Третичный цементит — из феррита

Цементит неустойчивое соединение

При содержании углерода 0,8% и температуре 727°с Весь аустенит разлагается и превращается в механическую смесь феррита и цементит-перлита. Сталь, содержащая 0,8% углерода, называется эвтектоидной Стали, содержащей 0.02-0.8% углерода называется по-эвтектоида и 0,8-2.14% углерода-по-эвтектоида.

При температуре, соответствующей линии PSK, аустенит, оставшийся в сплаве системы, разлагается с образованием перлита, механической смеси феррита и цементита. Линия PSK называется линией преобразования перлита.

При температуре, соответствующей линии SE, аустенит насыщается углеродом, а при понижении температуры выделяется избыточный углерод (вторичный) в виде цементита.

  • Вертикальный DFKL означает, что химический состав цементита не изменяется. Изменяются только форма и размер кристаллов, что значительно влияет на свойства сплава. Наиболее крупные кристаллы цементита образуются при их выделении из жидкости в процессе первичной кристаллизации.Белый чугун с 4,3% углерода, называют эвтектическим. Белый чугун с содержанием углерода 2,14-4,3% называют перегретым, а 4,3-6,67% — перегретым.

Общие сведения о сплаве

Отличительным свойством стали является наличие в структуре специальных легированных примесей и углерода. Собственно, по содержанию углерода и определяют доэвтектоидный сплав

Здесь важно различать и классическую эвтектоидную, а также ледебуритную стали, которые имеют много общего с описываемой разновидностью технического железа. Если рассматривать структурный класс стали, то доэвтектоидный сплав будет относиться к эвтектоидам, но содержащим в составе легированные ферриты и перлиты. Принципиальным отличием от заэвтектоиднов является уровень углерода, находящийся ниже 0,8%

Превышение этого показателя позволяет относить сталь к полноценным эвтектоидам. В некотором роде противоположностью доэвтектоида является заэвтектоидная сталь, в которой помимо перлита также содержатся вторичные примеси карбидов. Таким образом, существует два основных фактора, позволяющих выделять доэвтектоидные сплавы из общей группы эвтектоидов. Во-первых, это относительно небольшое содержание углерода, а во-вторых, это особый набор примесей, основу которых составляет феррит

Принципиальным отличием от заэвтектоиднов является уровень углерода, находящийся ниже 0,8%. Превышение этого показателя позволяет относить сталь к полноценным эвтектоидам. В некотором роде противоположностью доэвтектоида является заэвтектоидная сталь, в которой помимо перлита также содержатся вторичные примеси карбидов. Таким образом, существует два основных фактора, позволяющих выделять доэвтектоидные сплавы из общей группы эвтектоидов. Во-первых, это относительно небольшое содержание углерода, а во-вторых, это особый набор примесей, основу которых составляет феррит.

Материалы для производства силикатных бетонов

Основным вяжущим компонентом в силикатном бетоне выступает тонкомолотая известь кипелка или известь-пушонка, которая в сочетании с заполнителями и составляет основное сырье для производства силикатных бетонов. После добавления воды и последующей тепловой обработки в автоклавах, силикатобетонная смесь превращаться в прочное бетонное изделие.

Известь, применяемая для производства силикатных смесей должна отвечать следующим свойствам:

  • средняя скорость гидратации;
  • умеренный экзотермический эффект;
  • вся фракция должна быть одинаково обожженной;
  • MgO менее 5%;
  • время гашения извести — 20 мин не более.

Недожог известковой массы приводит к повышенному расходу материала. Пережог снижает время гидратации извести, что приводит к вспучиванию, появлению трещин на поверхности изделий и др.

Известь

Известь, применяемая для производства силикатобетона, обычно используется в виде тонкомолотых известковых смесей следующего состава:

  • известково-кремнеземистые — соединение извести и кварцевого песка;
  • известково-шлаковые (известь и доменный шлак);
  • известково-зольные — топливная сланцевая или угольная зола и известь;
  • известково-керамзитовые и другие подобные компоненты, получаемые из отходов промышленного производства пористых заполнителей;
  • известково-белитовые вяжущие, получаемые при низкотемпературном обжиге известково-кремнеземистой сухой смеси и кварцевого песка.

В качестве кремнеземистых заполнителей используют следующие материалы:

  • кварцевый молотый песок;
  • металлургические (доменные) шлаки;
  • зола ТЭЦ.

Наиболее часто в качестве заполнителей выступают кварцевые пески средней и мелкой фракции, которые по своему составу должны выглядеть следующим образом:

  • 80% и более кремнезема;
  • менее 10% глинистых включений;
  • 0,5% и меньше примесей слюды.

Крупные включения глины в структуре кварцевого песка снижают морозостойкость и прочность силикатного бетона.

Кварцевый песок

Тонкомолотый кварцевый песок оказывает значительное влияние на формирование высоких эксплуатационных свойств силикатных бетонов. Так, с повышением дисперсности частиц песка увеличивается морозостойкость, прочность и другие характеристики силикатных материалов.

При выборе составляющих для изготовления силикатного бетона необходимо знать следующее:

  1. Расход вяжущего увеличивается пропорционально увеличению прочности бетона.
  2. Снижение расхода вяжущих в составе силикатной смеси наблюдается при повышении дисперсности мелкого кварцевого песка, и увеличивается при повышении формовочной влажности силикатобетонного раствора.
  3. Дисперсность молотого кварцевого песка должна быть в 2,5 раза ниже дисперсности молотой извести.

Стойкость к коррозии

Разрушительные процессы в цементном камне происходят из-за взаимодействия его компонентов с кислотами и солями, которые содержатся в воде. Химические соединения могут раствориться в жидкости или кристаллизироваться. В любом случае они приводят к разрушениям из-за возникновения внутреннего напряжения. Чтобы защититься от коррозии нужно:

  • ответственно подойти к выбору цемента;
  • снизить пористость материала;
  • осуществить гидроизоляцию цемента;
  • ввести пуццолановые добавки в состав стройматериала.

Свойства силикатных бетонов

Основные свойства силикатных бетонов представлены следующими показателями:

  1. Водопоглощение силикатных изделий, в зависимости от способа уплотнения бетонной смеси, равно 10–18%.
  2. Морозостойкость высокопрочного силикатного бетона доходит до 100 циклов и более.
  3. Высокая коррозийная стойкость – эти параметры незначительно отличаются от показателей цементного бетона.
  4. Термостойкость.
  5. Устойчивость к температурным и атмосферным воздействиям.
  6. Низкая себестоимость производства готовых изделий.
  7. Долговечность (до 70 лет).

Степень измельчения/помол

От данного свойства зависит, через какое время затвердеет цемент, и какая прочность будет у этого затвердевшего материала. Лучше выбирать мелкий помол, поскольку именно у такого материала быстро происходит реакция взаимодействия между цементом и водой, увеличивается прочность. Но наиболее мелкая степень измельчения имеет противоположный результат – у цемента увеличивается потребность в воде, происходят осадочные деформации. Все это влечет за собой понижение прочности цемента. Чтобы не прогадать, строители рекомендуют, чтобы в составе цемента были как крупные частицы – 80 мкм, так и мелкие – порядка 40 мкм. Чтобы сэкономить, можно в обычный крупного помола цемент добавить сверхтонкий. Достаточно, чтобы последний составлял 15-25%.

Термическая обработка Общие положения термической обработки

Термическая обработка состоит в том, чтобы нагревом до определенной температуры и последующим охлаждением вызвать желаемое изменение структуры металла.

Основные факторы воздействия при термической обработке — температура и время, поэтому режим любой термической обработки можно представить графиком в координатах t (температура)—  (время).

Режим термической обработки характеризуют следующие основные параметры:

— температура нагрева tmax, т.е. максимальная температура, до которой был нагрет сплав при термической обработке;

— время выдержки сплава при температуре нагрева в,;

— скорость нагрева V нагр;

— скорость охлаждения Vохл.

Если нагрев (или охлаждение) происходит с постоянной скоростью, то это в координатах температура — время характеризуется прямой линией с определенным, постоянным углом наклона.

Термическая обработка может быть сложной, состоящей из многочисленных нагревов, прерывистого или ступенчатого нагрева (охлаждения), охлаждения в область отрицательных температур и т. д. Такая термическая обработка может быть изображена в координатах температура — время.

Графиком температура — время может быть охарактеризован любой процесс термической обработки.

Материалы для производства силикатных бетонов

Основным вяжущим компонентом в силикатном бетоне выступает тонкомолотая известь кипелка или известь-пушонка, которая в сочетании с заполнителями и составляет основное сырье для производства силикатных бетонов. После добавления воды и последующей тепловой обработки в автоклавах, силикатобетонная смесь превращаться в прочное бетонное изделие.

Известь, применяемая для производства силикатных смесей должна отвечать следующим свойствам:

  • средняя скорость гидратации;
  • умеренный экзотермический эффект;
  • вся фракция должна быть одинаково обожженной;
  • MgO менее 5%;
  • время гашения извести — 20 мин не более.

Недожог известковой массы приводит к повышенному расходу материала. Пережог снижает время гидратации извести, что приводит к вспучиванию, появлению трещин на поверхности изделий и др.

Известь

Известь, применяемая для производства силикатобетона, обычно используется в виде тонкомолотых известковых смесей следующего состава:

  • известково-кремнеземистые — соединение извести и кварцевого песка;
  • известково-шлаковые (известь и доменный шлак);
  • известково-зольные — топливная сланцевая или угольная зола и известь;
  • известково-керамзитовые и другие подобные компоненты, получаемые из отходов промышленного производства пористых заполнителей;
  • известково-белитовые вяжущие, получаемые при низкотемпературном обжиге известково-кремнеземистой сухой смеси и кварцевого песка.

В качестве кремнеземистых заполнителей используют следующие материалы:

  • кварцевый молотый песок;
  • металлургические (доменные) шлаки;
  • зола ТЭЦ.

Наиболее часто в качестве заполнителей выступают кварцевые пески средней и мелкой фракции, которые по своему составу должны выглядеть следующим образом:

  • 80% и более кремнезема;
  • менее 10% глинистых включений;
  • 0,5% и меньше примесей слюды.

Крупные включения глины в структуре кварцевого песка снижают морозостойкость и прочность силикатного бетона.

Кварцевый песок

Тонкомолотый кварцевый песок оказывает значительное влияние на формирование высоких эксплуатационных свойств силикатных бетонов. Так, с повышением дисперсности частиц песка увеличивается морозостойкость, прочность и другие характеристики силикатных материалов.

При выборе составляющих для изготовления силикатного бетона необходимо знать следующее:

  1. Расход вяжущего увеличивается пропорционально увеличению прочности бетона.
  2. Снижение расхода вяжущих в составе силикатной смеси наблюдается при повышении дисперсности мелкого кварцевого песка, и увеличивается при повышении формовочной влажности силикатобетонного раствора.
  3. Дисперсность молотого кварцевого песка должна быть в 2,5 раза ниже дисперсности молотой извести.

Первичный, вторичный и третичный цементит

По способу и области образования он подразделяется на три основных вида:

  • первичный;
  • вторичный;
  • третичный.

Образование первичного цементита наблюдается в процессе кристаллизации заэвтектического чугуна. В этот момент образуются кристаллы вытянутой формы. Они образовывают первичный карбид. Первичное образование может проявляться в доэвтектическом чугуне в составе ледебурита в процессе кристаллизации расплава. Проведенные исследования показали, что такая смесь железа и углерода присутствует не только в белом чугуне. Она может проявиться в сером чугуне после завершения операции так называемой графитизации.

Процесс образования вторичного вида наблюдается в основном при охлаждении аустенита. Это явление наблюдается при снижении температуры ниже 1147 °С. При такой температуре происходит снижение концентрации углерода в аустените. Освободившиеся атомы углерода вступают в новые связи, и образуется цементит, который называется вторичным. При дальнейшем снижении температуры до эвтектоидной продолжается его формирование. Даже при комнатной температуре он встречается в составе перлита. В этих условиях его можно обнаружить в заэвтектоидной стали. Он образовывается на границах зернистой структуры.

Процесс охлаждения феррита формирует так называемый третичный цементит. Данный вид достаточно сложно зафиксировать, и проводит дальнейшее наблюдение за его образованием. Эта проблема связана с появлением третичного цементита в небольших количествах. Исследования образования данной фракции показали, что он приобретает несколько форм: пластинки, прожилки или в форме иголок. Все эти элементы формируются в зёрнах феррита. Третичное образование достаточно сложно получить, потому что при повышении процентного содержания углерода третичный цементит соединяется с перлитом. При повышении скорости охлаждения содержание углерода сохраняется в растворе металла и образование третичной фракции прекращается. Явным признаком образования является результат постепенного старения феррита. В этом случае в содержании феррита изменяется концентрация углерода.

Из приведенного выше описания можно сделать следующие выводы:

  • первичная фракция образовывается в результате кристаллизации расплава;
  • вторичный – в результате последовательного охлаждения аустенита;
  • третичный – после охлаждения феррита.

В различных марках стали и чугуна цементит первичный обладает высокой вариативностью формы. Это могут быть пластины правильной формы полоски или образования в форме иголок. При проведении операции отжига он может принимать форму округлых образований. Как результат трансформируется в зернистый перлит.

Химические свойства

Как химическое соединение цементит обладает своими физическими, химическими и механическими характеристиками. Он имеет серый кристаллический вид на изломе, относительно твёрдый с высокой термической устойчивостью. Основные химические свойства цементита выражаются в следующих показателях:

  • химическая формула Fe3C;
  • разложение структуры происходит при температуре более 1650°С;
  • подвержен воздействию различных кислот (особенно высоко концентрированных);
  • быстро вступает в реакцию с кислородом.

На основании существующих химических свойств сформированы физические и механические свойства. К основным физическим свойствам относятся:

  • температура плавления равняется 1700 °С;
  • молекулярная масса составляет 179,55 а.е.м.;
  • плотность цементита равна 7,7 г/см3 при температуре равной 20 °С.

К основным механическим свойствам относятся:

  • твердость;
  • стойкость к ударным воздействиям (хрупкость);
  • сопротивление на излом;
  • пластичность.

Твёрдость этого соединения достигает больших значений и равна НВ 8000 МПа или HRC 70. Однако он обладает достаточной хрупкостью и низкой пластичностью.

Обладая перечисленными свойствами, цементит активно используется при производстве литых деталей различного назначения. Образование различного вида цементита и его соединений с другими формами приводит к изменению характеристик получаемой стали или чугуна, следовательно, к улучшению или снижению отдельных потребительских свойств.

Например, для получения белого чугуна и придания ему высокой прочности и пластичности стараются перевести цементит в графит. Это достигается при проведении операции отжига. При возрастании температуры он распадается на две составляющие: феррит и графит.

В зависимости от требуемых свойств в чугуне стараются сохранить требуемое количество цементита. Особенно это касается так называемого свободной фракции этого соединения. Для снижения его концентрации применяют различные способы химической и термической обработки. Для решения этой задачи применяют раствор азотной кислоты в чистом спирте. Структурно свободный цементит выпадает в осадок в результате кипячения чугунной болванки в этом растворе. Кроме этого применяют три вида обработки: отжиг, нормализацию и закалку.

Техническое железо содержит третичный цементит в сочетании с ферритом. Он проявляется по границе феррита при содержании углерода от 0,01% до 0,025%. Для повышения качества стали стараются снизить содержание свободного цементита. Особенно его концентрация наблюдается в мягких марках стали. Большое влияние на качество штамповки оказывает содержание этой смеси и перлита в единице объёма. Излишнее присутствие третичного цементита, особенно в форме продолжительной цепочки или сетки приводит к образованию разрывов во время штамповки. Поэтому для получения хорошей ковочной стали стараются снизить количество третичного цементита. Структура таких образований не должна превышать второго балла по установленной шкале. Получаемая твёрдость не должна превышать HB 50 единиц.

Фазы и структуры на диаграмме состояния железо-цементит

Диаграммы состояния строятся в координатах «концентрация – температура» и дают наглядное представление о фазовом составе сплавов; структурных превращениях, происходящих при нагреве и охлаждении; используются для выбора температуры при термической обработке и т. п. Для анализа превращений, происходящих в сталях и чугунах важнейшее значение имеет диаграмма состояния железо – цементит (рис. 28.1).

Рис. 28.1. Диаграмма состояния железо – цементит

На этой диаграмме АВСD является линией ликвидуса; ниже ее начинается кристаллизация. Точка с минимальной температурой кристаллизации (плавления), соответствующая 4,3 %С, называется эвтектикой (от лат. «легкоплавкий»), после затвердевания сплава ей соответствует структура ледебурита. Аналогичная точка 0,81 % С, где превращение происходит в твердом виде, называется эвтектоид, ей соответствует структура перлита. АHJЕСFD– линия солидуса; на этой линии кристаллизация заканчивается, и ниже ее все образовавшиеся фазы являются твердыми.

Диаграмма состояния железо-цементит объединяет 6 структурных составляющих, включая в себя 4 фазы (жидкость, феррит, аустенит, цементит) и 2 механические смеси (перлит и ледебурит).

Феррит

(Ф) представляет собой твердый раствор углерода в α-железе. Это самая мягкая и пластичная структурная составляющая. Предельное содержание углерода в феррите при 727 оС (точка Р) около 0,02 %, а при комнатной температуре (точка Q) – 0,01 %.

Аустенит

(А) представляет собой твердый раствор углерода в γ-железе. Это более твердая и прочная структурная составляющая. Существует при температуре выше 727 °С. Предельное содержание углерода (точка Е) – 2,14 %.

Цементит

(Ц) – карбид железа – химическое соединение Fe3C (6,67 %С) со сложной кристаллической решеткой, состоящей из ряда октаэдров (рис. 28.2), и является самой твердой и хрупкой структурной составляющей. По происхождению различают первичный цементит ЦI – выделяющийся из жидкости по линии СD, вторичный ЦII – из аустенита по линии ЕS, третичный ЦIII – из феррита по линии РQ.

Перлит

[34] (П) представляет собой механическую смесь феррита и цементита, содержащую в среднем 0,81 % С. Благодаря наличию цементита, он более прочен и тверд, чем феррит и аустенит.

Ледебурит

[35] (Л) является механической смесью феррита и цементита, содержащей в среднем 4,3 % С. Благодаря большей доле цементита он более тверд и хрупок, чем перлит.

Лекция №3. Железоуглеродистые сплавы

Лекция №3. Железоуглеродистые сплавы

Сплавы железа с углеродом (стали и чугуны) являются наиболее распространенными материалами. Они называются черными металлами и составляют около 95% от производства металлов. Диаграмма состояния железоуглеродистых сплавов дает представление о строении сталей и чугунов.

3.1. Диаграмма состояния железо – углерод

Прежде чем рассматривать превращения в сплавах этой системы, рассмотрим свойства и строение компонентов и фаз системы, а также области их существования.

Компоненты системы Fe – C

. Чистое
железо (Fe)
– серебристо-белый полиморфный металл, с плотностью γ = 7,86г/см3, атомный номер 26, атомный вес 55,85, температура плавления 1539°C, имеет невысокую твердость HB80. При нагреве железо испытывает полиморфные превращения (рис. 1.9) и имеет две полиморфные модификации Feα и Feγ.

Углерод (C)

– неметаллический полиморфный элемент (графит и алмаз), с плотностью 2,25 г/см3.

Фазы системы Fe – C

. Все сплавы комбинируются из трех однофазных и двух двухфазных структурных составляющих.

Однофазные структурные составляющие

.
Феррит
– твердый раствор внедрения углерода в Fα, обозначается Feα(C) – Ф. Максимальная растворимость углерода в феррите достигает 0,02% при 727°С и 0,006% при 20°С. Феррит — это белые по цвету кристаллы, по свойствам он близок к свойствам технически чистого железа. Область существования феррита – QPG.

Аустенит

– твердый раствор внедрения углерода в Feγ. Его обозначают Feγ(C) – A. Хорошо растворяет углерод, при t = 1147°С содержит 2,14% С, а при = 727°С – 0,8%С. Аустенит парамагнитная, пластичная фаза. Область аустенита NJESG.

Цементит

(Ц) – химическое соединение Fe3C- карбид железа, образующийся при содержании углерода 6,67%. Температура плавления 1600°С. Имеет белый, блестящий цвет, хрупкий, твердый. Может быть первичный, вторичный, третичный. Область цементита DFKL.

Имеется еще жидкая фаза, располагающаяся выше линии ликвидус. Железо хорошо растворяет углерод, образуя однородную жидкую фазу – Ж.

Двухфазные структурные составляющие

.
Ледебурит
– эвтектика системы Fe – Fe3C, представляет собой механическую смесь цементита и аустенита и содержит 4,3%С. Кристаллизуется при t = 1147°С, обозначается – Л. Эвтектическая реакция: ЖC↔ ЛC(АE + ЦF). При температуре 727°С происходит эвтектоидное превращение ледебурита, и его структура будет ЛC(ПS + Ц)

Перлит –

эвтектоид системы Fe — Fe3C – механическая смесь, состоящая из мелких пластинок цементита в ферритной основе. Обозначается – П. Перлит образуется из однофазного раствора Feγ(С) при полиморфном превращении Feγ→ Feα при температуре t = 727°С и концентрации углерода 0,8%.

Feγ(C)0,8%→ Fe3C6,67% + Feα(C)0,025%

Железо, взаимодействуя с углеродом, образует ряд химических соединений: Fe3C, Fe2C, FeC и др. Поскольку химическое соединение в диаграммах состояния может быть рассмотрено как компонент, то диаграмму железо-углерод обычно изображают только до содержания углерода 6,67%, при котором образуется карбид железа Fe3C (устойчивое химическое соединение). Поскольку практическое значение имеет только эта часть диаграммы железо-углерод, то этот участок диаграммы называют диаграммой состояния железо – цементит.

Рис. 3.1. Диаграмма состояния железо – углерод (железо – цементит)

Линия ABCD является линией ликвидус

(S), линия AHJECD-
линией солидус
(L) системы железо-цементит. По линии ECF, при t = 1147°С происходит эвтектическое превращение АE+ ЦF → ЛC, т. е. образуется эвтектика – ледебурит.

По линии PSK происходит эвтектоидное превращение ФP + ЦK → ПS, то есть образуется эвтектоид системы – перлит. К линии PSK аустенит подходит с концентрацией 0,8%С. Если концентрация углерода меньше 0,8%, то по линии GS из аустенита выделяется феррит, если больше – то по линии ES выделяется цементит вторичный – ЦII. Линия PQ – линия переменной растворимости углерода в решетке феррита. Избыточный углерод образует с железом химическое соединение Fe3C – цементит. Чтобы отметить особенности выделения цементита в сплавах с концентрацией углерода менее 0,025% его обозначают цементит третичный – ЦIII. Он выделяется в виде дисперсных включений в зернах феррита, увеличивая его прочность.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы Fe – Fe3C, т. е. критические точки, имеют условное обозначение. Все критические точки обозначаются буквой А. При нагреве к А добавляют букву «с», то есть Ас, а при охлаждении – «r», то есть Ar.

Первая критическая точка А1 лежит на линии PSK (727°С) и соответствует превращению П ↔ А; А2 соответствует температуре 768°С – точка Кюри, А3- линия GS, по которой происходит превращение Ф↔А, температура которого зависит от концентрации углерода в сплаве, Аcm – линия SE – начало выделения ЦII.

Все сплавы системы Fe-Fe3C по структурному признаку делят на две большие группы: стали и чугуны.

Углеродистыми сталями

называют сплавы железа с углеродом до концентрации 2,14%С. Это теоретическое определение. На практике в сталях, как правило, не содержится углерода более 1,5%. Их подразделяют на: доэвтектоидные стали – (содержащие от 0,025% до 0,8%С, Ф + П), эвтектоидную – (0,8%С, П), заэвтектоидные – (0,8%…2,14%С, П + ЦII), рис. 3.2.

а б в

Рис. 3.2. Микроструктуры углеродистых сталей:

а – доэвтектоидная; б – эвтектоидная; в – заэвтектоидная

В доэвтектоидной стали феррит выявляется в микроструктуре в виде светлых полей, а перлит – в виде полей полосчатого (темного) строения (рис.3.2а), где общий светлый фон – феррит, а темные места – тени от выступающих цементитных пластин.

Количество перлита в структуре стали возрастает пропорционально увеличению содержания углерода, это происходит до содержания углерода 0,8%, когда он становится единственной структурной составляющей эвтектоидной стали (рис. 3.2б).

Микроструктура заэвтектоидной стали состоит из перлита и цементита вторичного, который при медленном охлаждении выделяется в виде сетки по границам зерен перлита (рис. 3.2в).

Сплавы железа с углеродом, содержащие углерода больше 2,14% (до 6,67%), называют чугунами

. Их подразделяют на доэвтектические (2,14%…4,3%С, П + ЦII+ Л(П + Ц)), эвтектический (4,3%С, Л(П + Ц)) и заэвтектические (4,3%С…6,67%С, ЦI+ Л(П + Ц)) (рис. 3.3).

а б в

Рис. 3.3. Микроструктуры чугунов:

а– доэвтектический; б – эвтектический; в – заэвтектический

Кроме этого выделяют технически чистое железо (до 0,025%С, Ф + ЦIII).

При охлаждении железоуглеродистых сплавов углерод может не только химически взаимодействовать с железом, но и выделяться в форме графита. Иначе говоря, жидкий раствор, феррит и аустенит могут находиться в равновесии не только с цементитом, но и графитом, и тогда диаграмма состояния будет железо – графит.

Цементит – фаза менее устойчивая, чем графит Г поэтому диаграмма Fe – Fe3C неустойчивая, метастабильная, а Fe – Г – устойчивая. Процесс образования графита носит название графитизация. Графитизация больше проявляется в правой части диаграммы и приводит к образованию половинчатых или серых чугунов, имеющих в своей структуре графит, в отличие от белых чугунов, содержащих в своей структуре только цементит.

3.2. Углерод и постоянные примеси в стали, их влияние на ее свойства

Фазовый состав любой стали в равновесном состоянии – феррит + цементит. Количество цементита возрастает пропорционально росту содержания углерода, и поскольку цементит – твердая, хрупкая фаза, то повышаются прочностные свойства стали (до 0,9%С), твердость, снижаются пластичность и ударная вязкость. С повышением содержания углерода ухудшаются технологические свойства – падают свариваемость, обрабатываемость резанием, деформируемость в горячем и холодном состоянии. На каждые 0,1% С повышается на 20°С порог хладноломкости. Кроме железа и углерода в стали всегда присутствует постоянные примеси.

К постоянным

примесям относятся марганец – Mn, кремний – Si, сера – S, фосфор – P.

Кремний и марганец являются технологическими примесями и находятся в углеродистых сталях в количестве 0,35…0,40% и 0,5…0,8% соответственно. Раскисляя сталь, Si и Mn улучшают её свойства и являются полезными примесями. Растворяясь в феррите, Si и Mn упрочняют его, повышают предел упругости, причем Mn связывает серу и парализует ее вредное влияние.

Сера резко ухудшает свойства стали, выше допустимого предела (0,06%) способна образовывать с железом легкоплавкую эвтектику FeS + Fe и вызывать красноломкость.

Фосфор допускается до 0,045%, растворяясь в феррите, упрочняет его и охрупчивает при низких температурах – резко повышает порог хладноломкости. Сера и фосфор являются вредными примесями.

Кроме постоянных примесей в сплавах железо-углерод имеются скрытые и случайные примеси.

К скрытым

примесям относятся газы (O2, H2, N2), находящиеся в сталях в очень малых количествах. Эти примеси ухудшают пластичность стали.

Случайными

называют примеси цветных металлов (Cu, Pb, Sn, Sb и др.), внесенные в сталь вместе с шихтовыми материалами.

3.3. Классификация и маркировка сталей

По химическому составу

стали могут быть углеродистыми и легированными. Углеродистые содержат железо, углерод и примеси, а легированные содержат дополнительно легирующие элементы, введенные в сталь с целью изменения ее свойств.

По содержанию углерода

углеродистые и легированные стали делят на низкоуглеродистые (до 0,25%С), среднеуглеродистые (0,25…0,7%С) и высокоуглеродистые (более 0,7%С).

По назначению

различают стали конструкционные, идущие на изготовление конструкций, сооружений, деталей машин и инструментальные, идущие на изготовление различного инструмента.

По качеству

конструкционные стали классифицируют на стали обыкновенного качества и качественные. Качество стали определяется совокупностью свойств, определяемых процессом производства, химическим составом, содержащим газов и вредных примесей. В соответствии с ГОСТом стали обыкновенного качества должны содержать не более 0,04% Р и 0,05% S, а качественные -не более 0,035% Р и 0,04% S.

Инструментальные углеродистые стали могут быть качественные и высококачественные (Р, S ≤0,035%).

По раскислению –

в зависимости от степени раскисления при выплавке стали могут быть спокойными (сп), полуспокойными (пс) и кипящими (кп), что и указывают в марке.

По выплавке –

конверторные, мартеновские, электростали.

Углеродистые стали.

Углеродистые конструкционные стали обыкновенного качества а зависимости от назначения и гарантируемых свойств делятся на три группы А, Б и В.

Стали группы А имеют гарантируемые механические свойства. Они используются в состоянии поставки без горячей обработки. Они маркируются буквами Ст. и цифрами, обозначающими порядковый номер марки. Выпускается семь марок сталей этой группы: Ст.0, Ст.1, Ст.2…Ст.6. В зависимости от раскисления ставятся буквы «сп», «пс», «кп». Например, Ст.1сп, Ст.3кп, Ст.5пс. С увеличением номера стали увеличивается содержание углерода (от 0,1 до 0,5% С, исключение – Ст.0 ≈ 0,23% С).

Стали группы Б имеют гарантируемый химический состав. Эти стали подвергаются горячей обработке (ковке, сварке, термообработке, упрочнению ТМО и т. д.). При этом механические свойства не сохраняются, а химический состав важен для определения режима обработки. Они маркируются: БСт. 1… БСт.6.

Стали группы В имеют гарантируемые механические свойства и химический состав и используются, как и сталь группы Б. В марках этой стали на первое место ставится буква В: ВСт.1…ВСт.5. Углеродистая сталь обыкновенного качества – дешевая, ее выплавка составляет около 80 % всего производства углеродистых сталей.

Из сталей Ст.1, Ст.2, Ст. 3 группы А изготавливают крепеж, балки и т.д., из Ст.1,Ст.2,Ст.3 групп Б, В – цементуемые изделия, малонагруженные валы, детали машин, Ст.4 – используют в судостроении, Ст.5, Ст.6 – идут на изготовление средненагруженных деталей (валы, пружины, рессоры, крепеж)

Углеродистые качественные конструкционные стали маркируются двузначными цифрами, указывающими среднее содержание углерода в сотых долях процента и буквами, показывающими степень раскисления стали: сталь 08, сталь 10кп, сталь 20 и т. д. При содержании в стали 0,7- 1% Mn в марке стали добавляется буква Г: 15Г, 30Г, 65Г и т.д. Качественные стали поставляют по химическому составу и по механическим свойствам.

Низкоуглеродистые конструкционные стали это малопрочные, высокопластичные стали, используемые для изготовления малонагруженных и цементуемых деталей, работающих на износ: шестерни, валы, втулки, прокладки и т.д.

Среднеуглеродистые стали более прочные и менее пластичные. Из них изготавливают: шпиндели, штоки, шатуны.

Высокоуглеродистые стали прочные с упругими свойствами, износостойкие. Из них изготавливают наиболее ответственные детали – пружины, рессоры и т.д.

Углеродистые инструментальные качественные стали маркируются буквой «У» и цифрой, обозначающей содержание углерода в десятых долях процента: У7, У8 …У13. В высококачественных сталях в конце марки ставится буква А – У7А.

Легированные стали.

Легированной называют сталь, содержащую специально введенные в нее легирующие элементы с целью изменения строения и свойств. Легирующие элементы могут образовывать с железом твердые растворы – легированный феррит и легированный аустенит, и химическое соединение – легированный цементит или специальные карбиды.

Легированные стали классифицируются:

  • по равновесной структуре

    : доэвтектоидные стали (с избыточным ферритом), эвтектоидные (перлитная структура) и заэвтектоидные (с избыточным карбидом) – эти стали составляют перлитный класс, ледебуритные, аустенитные, ферритные;

  • по составу

    : никелевые, хромистые, хромоникелевые и т.д.;

  • по назначению

    : конструкционные, инструментальные
    ,
    с особыми свойствами;

  • по количеству легирующих элементов

    : низколегированные стали до 5%, среднелегированные – 5…10%, высоколегированные – более 10% легирующих элементов;

  • по качеству

    : качественные, высококачественные, особовысококачественные;

Маркируются легированные стали с помощью букв и цифр, указывающих примерный химический состав стали.

В конструкционных сталях первые две цифры в марке показывают среднее содержание углерода в сотых долях процента. Далее показывается содержание легирующих элементов. Каждый элемент обозначается своей буквой: Х- хром, Н – никель, Т – титан, Д – медь, Г – марганец, С – кремний, А – азот, К — кобальт, Р – бор, Ф – ванадий, М – молибден, В – вольфрам, Ю – алюминий.

Цифры после буквы указывают примерное содержание этого элемента в процентах. Буква А в конце обозначает, что сталь высококачественная, Ш — особовысококачественная.

В инструментальных сталях содержание углерода указывается одной цифрой и берется в десятых долях; если эта цифра отсутствует, то содержание углерода – более одного процента, легирующие элементы и их количество обозначают как обычно: 9ХС, ХВГ, ХВ5 . Например, сталь 9ХС содержит 0,9% С и примерно по одному проценту хрома и кремния.

Для некоторых групп сталей применяют другую маркировку.

3.4. Классификация и маркировка чугунов

Чугуном называют железоуглеродистые сплавы, содержащие более 2,14%С. В практике машиностроения в большинстве случаев используют чугун с содержанием 2,5…4,0% С.

Чугуны классифицируются по назначению, степени графитизации или структуре, форме графита, микроструктуре металлической основы, химическому составу.

По назначению группы подразделяются на передельные (идут на переработку в сталь) и литейные (для изготовления отливок).

По структуре чугуны подразделяются на белый, серый и половинчатый, в зависимости от формы выделения С.

Белым

называют чугун, в котором при нормальных условиях весь углерод находится в связанном состоянии, главным образом в форме цементита. На изломе у этого чугуна белый цвет и характерный металлический блеск. Наличие большого количества высокотвердого цементита обусловливает высокую хрупкость и плохую обработку резанием. Белый чугун в основном перерабатывают в сталь или при помощи термообработки трансформируют в ковкий чугун, иногда применяют как очень износостойкий материал.

Серым

называют чугун, в котором весь углерод или большая его часть находятся в виде графита, а в связанном состоянии (в форме цементита) углерода содержатся не более 0,8%. На изломе он имеет серый цвет.

В половинчатом

чугуне часть углерода находится в виде графита, но при этом не менее 2%С присутствует в форме цементита.

По форме графита чугун подразделяется на серый

– с пластинчатым графитом различной степени завихренности и толщины пластинок;
ковкий
– с хлопьевидными включениями графита;
высокопрочный
– с шаровидными включениями графита.

По структуре металлической основы чугуны подразделяются на ферритные

,
ферритно-перлитные
и
перлитные
.

По химическому составу чугуны подразделяются на нелегированные, низко-, средне- и высоколегированные, содержащие соответственно 3…3,5%, 7…10% и более 10% легирующих элементов.

В промышленном чугуне кроме углерода обязательно содержатся кремний, марганец, сера и фосфор.

Кремний способствует графитизации чугуна и специально добавляется, его содержание в чугунах от 0,5% до 4,5%.

Марганец препятствует графитизации и способствует получению в структуре Fe3С, содержание Мn в чугунах от 0,4 до 1,3%.

Сера является нежелательным элементом, она снижает жидкотекучесть, отбеливает чугун. Содержание S допускается не более 0,08…0,12%.

Фосфор – полезная примесь, улучшает жидкотекучесть, увеличивает твердость и износостойкость чугуна. Содержание P – 0,3…0,8%.

На структуру чугуна кроме углерода и кремния существенно влияет скорость охлаждения отливок. При быстром охлаждении получается белый чугун, при медленном – серый. Наибольшее применение находит серый чугун.

Серый чугун

содержит до 3,8%С, при этом в форме цементита находится не более 0,8%С, а остальной углерод находится в виде графитовых пластинок – чешуек.

Металлической основой серого чугуна может быть Φ, Φ+Π, Π, при этом структура не влияет на пластичность серого чугуна (все равно низкая), но оказывает влияние на его твердость и прочность.

Графит имеет низкую механическую прочность, и места его залегания можно рассматривать как внутренние надрезы, трещины, нарушения сплошности. Чем больше графита и чем крупнее включения, тем ниже механические характеристики. Для измельчения включений графита проводят модифицирование жидкого чугуна путем добавления в него силикокальция, алюминия и ферросилиция.

Серый чугун широко применяют в машиностроении. Это дешевый металл с хорошими литейными свойствами. Он легко обрабатывается режущим инструментом, обладает хорошими антифрикционными и демферирующими свойствами.

Рис. 3.4. Влияние металлической основы и формы включений

графита на свойства чугуна

Серые чугуны маркируются буквами СЧ (серый чугун) и цифрами, показывающими предел прочности при растяжении (временное сопротивление при растяжении σв). Например: СЧ12, СЧ18, СЧ21, СЧ36, СЧ40 и т.д.

Чугуны СЧ12 – СЧ18 используют для изготовления неответственных деталей: крышек, корпусов подшипников, фундаментных плит и т.п.

Чугун, начиная с СЧ21, используют для изготовления станин мощных станков, ответственных деталей, зубчатых колес и т.п.

При быстром охлаждении отливок графитизация может произойти только в середине отливки, а поверхность приобретает структуру белого или половинчатого чугуна. Такие отливки из серого чугуна называют отбеленными, они обладают хорошим сопротивлением износу, из них изготавливают валки и шары для мельниц, тормозные колодки и т.д.

Высокопрочный чугун

содержит около 3,0…3,6%С. Его получают добавлением в жидкий чугун магния (0,03…0,07%) или других щелочных или щелочноземельных металлов. При этом выделяющийся графит приобретает шаровидную форму, такой графит меньше ослабляет металлическую основу, и механические свойства чугуна улучшаются – повышается его пластичность и увеличивается твердость. Металлическая основа высокопрочного чугуна также может быть различной: Ф, Ф+П, П.

Высокопрочные чугуны маркируются буквами ВЧ и цифрами, показывающими предел прочности при растяжении в кгс/мм2 и относительное удлинение в %, например: ВЧ38-47, ВЧ40-10, ВЧ50-2,5, ВЧ60-2 и т.д.

Из высокопрочных чугунов изготавливают оборудование прокатных станов, кузнечно-прессовое оборудование, корпуса двигателей внутреннего сгорания, крупные валы и другие ответственные детали.

Ковкий чугун

содержит: 2,2…3,0%С, 0,7…1,5%Si, 0,2…0,6%Mn, менее 0,2%Р и менее 0,1%S. Термин «ковкий чугун» является условным и отражает повышенную пластичность этого чугуна при растяжении по сравнению с другими видами.

Ковкий чугун получают путем отжига отливок из белого чугуна, в результате чего цементит распадается и графит выделяется в виде хлопьев.

При отжиге изделия из белого чугуна нагревают выше температуры А1(950…1000°С), выдерживают около 15 часов, медленно охлаждают в течение 30 часов в зоне А1 (температуры эвтектоидного превращения) с 760°С до 720°С и затем охлаждают до комнатной температуры.

Рис. 5.4. Схемы отжига белого чугуна на ферритный (1) и перлитный (2) ковкие чугуны

При t = 950°С происходит распад цементита Fe3С →3Fe + Г, а затем при t = 760…720°С – распад аустенита А→ Ф + Г.

В результате всех превращений структура ковкого чугуна будет состоять из зерен Ф и равномерно распределенных хлопьев Г. Поскольку в таком чугуне находится довольно много графита, излом получается темным и его называют черносердечным

(Ф + Г) – ковкий ферритный чугун.

Если в области эвтектоидного превращения скорость охлаждения будет выше, то у чугуна возможна структура перлита и графита, т.е. П + Г, такой чугун называют ковким перлитным чугуном, или светлосердечным

.

Ковкий чугун маркируют буквами КЧ и цифрами предела прочности и относительного удлинения, например: КЧ30-6, КЧ50-4, КЧ60-3 и т.д.

Из ковких ферритных чугунов изготавливают как изделия, работающие при высоких статических и динамических нагрузках (картеры редукторов, ступицы, кроки), так и менее ответственные детали (хомуты, гайки, фланцы муфт).

Из ковкого перлитного чугуна делают вилки карданных валов, звенья и рамки конвейеров, втулки, тормозные колодки.

Ковкий чугун применяют для деталей небольшого сечения, работающих при ударных и вибрационных нагрузках.

Легированные

и
специальные
чугуны получают введением присадок легирующих элементов. В качестве присадок применяют Cr, Ti, V и др. Специальные чугуны отличаются содержанием кремния и марганца.

Маркируются чугуны по-разному, например, антифрикционные: АЧС-1, АЧК-1, АЧВ-1 или АЧС-2, АЧК-2 и т.д., кремнистые (14-18% Si): С-15, С-17, жаростойкие: ЖЧХ-20 (20% Cr), ЖЧХ-22 и т.д.

Материалы для производства силикатных бетонов

Основным вяжущим компонентом в силикатном бетоне выступает тонкомолотая известь кипелка или известь-пушонка, которая в сочетании с заполнителями и составляет основное сырье для производства силикатных бетонов. После добавления воды и последующей тепловой обработки в автоклавах, силикатобетонная смесь превращаться в прочное бетонное изделие.

Известь, применяемая для производства силикатных смесей должна отвечать следующим свойствам:

  • средняя скорость гидратации;
  • умеренный экзотермический эффект;
  • вся фракция должна быть одинаково обожженной;
  • MgO менее 5%;
  • время гашения извести — 20 мин не более.

Недожог известковой массы приводит к повышенному расходу материала. Пережог снижает время гидратации извести, что приводит к вспучиванию, появлению трещин на поверхности изделий и др.

Известь

Известь, применяемая для производства силикатобетона, обычно используется в виде тонкомолотых известковых смесей следующего состава:

  • известково-кремнеземистые — соединение извести и кварцевого песка;
  • известково-шлаковые (известь и доменный шлак);
  • известково-зольные — топливная сланцевая или угольная зола и известь;
  • известково-керамзитовые и другие подобные компоненты, получаемые из отходов промышленного производства пористых заполнителей;
  • известково-белитовые вяжущие, получаемые при низкотемпературном обжиге известково-кремнеземистой сухой смеси и кварцевого песка.

В качестве кремнеземистых заполнителей используют следующие материалы:

  • кварцевый молотый песок;
  • металлургические (доменные) шлаки;
  • зола ТЭЦ.

Наиболее часто в качестве заполнителей выступают кварцевые пески средней и мелкой фракции, которые по своему составу должны выглядеть следующим образом:

  • 80% и более кремнезема;
  • менее 10% глинистых включений;
  • 0,5% и меньше примесей слюды.

Крупные включения глины в структуре кварцевого песка снижают морозостойкость и прочность силикатного бетона.

Кварцевый песок

Тонкомолотый кварцевый песок оказывает значительное влияние на формирование высоких эксплуатационных свойств силикатных бетонов. Так, с повышением дисперсности частиц песка увеличивается морозостойкость, прочность и другие характеристики силикатных материалов.

При выборе составляющих для изготовления силикатного бетона необходимо знать следующее:

  1. Расход вяжущего увеличивается пропорционально увеличению прочности бетона.
  2. Снижение расхода вяжущих в составе силикатной смеси наблюдается при повышении дисперсности мелкого кварцевого песка, и увеличивается при повышении формовочной влажности силикатобетонного раствора.
  3. Дисперсность молотого кварцевого песка должна быть в 2,5 раза ниже дисперсности молотой извести.

Источники

  • https://alit-stroi.ru/tehprocess/svojstva-cementita.html
  • https://lfirmal.com/cementit-strukturnaya-sostavlyayushchaya-zhelezouglerodistyh-splavov/
  • https://intehstroy-spb.ru/spravochnik/diagramma-sostoyaniya-zhelezo-uglerod.html
  • https://armatool.ru/cementit-struktura-svojstva-vidy/
  • https://TechnoRama.ru/raboty/svojstva-cementita.html
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]