Производство титана и его сплавов: особенности технологического процесса

Брусок кристаллического титана

Титан

— лёгкий прочный металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C.Титан и титановые сплавы сочетают легкость, прочность, высокую коррозийную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

  1. Структура
  2. Свойства
  3. Запасы и добыча
  4. Происхождение
  5. Применение
  6. Классификация
  7. Физические свойства
  8. Оптические свойства
  9. Кристаллографические свойства

Смотрите так же:

Хром

— структура и физические свойства

СТРУКТУРА

Кристаллическая структура кристалла

Титан имеет две аллотропические модификации. Низкотемпературная модификация, существующая до 882 °C, имеет гексагональную плотноупакованную решетку с периодами а = 0,296 нм и с = 0,472 нм. Высокотемпературная модификация имеет решетку объемноцентрированного куба с периодом а = 0,332 нм. Полиморфное превращение (882 °C) при медленном охлаждении происходит по нормальному механизму с образованием равноосных зерен, а при быстром охлаждении — по мартенситному механизму с образованием игольчатой структуры. Титан обладает высокой коррозионной и химической стойкостью благодаря защитной окисной пленке на его поверхности. Он не корродирует в пресной и морской воде, минеральных кислотах, царской водке и др.

Критерии выбора

Водонагреватели Титаны – это большое разнообразие оборудования по различным эксплуатационным характеристикам. Основной – объем водяного резервуара. Второй показатель – размеры топки. Чем больше топка, тем больше дров в нее можно заложить, тем быстрее нагреется вода.

Есть и чисто специфические качества водогрейного агрегата, на которые надо обращать внимание при выборе:

  • если топка будет сделана из чугуна, а не из стали, она прослужит дольше;
  • вода будет нагреваться быстрее в бойлере неразъемного типа;
  • разъемный вариант дает возможность крутить бак относительно топки, что позволяет точно расположить смеситель относительно места принятия водных процедур;
  • бак из нержавеющей стали прослужит практически вечно, но стоит такой прибор дороже;
  • некоторые производители облицовывают топку изнутри шамотным огнеупорным кирпичом, такая конструкция более эффективно выдерживает температурный режим;
  • в продаже есть водонагреватели на дровах (титаны), в водяной бак которых установлен ТЭН.

Последняя модификация очень популярна. Она дает возможность не использовать дрова.

При включении электрического нагревательного элемента набегает большая сумма за потребление электроэнергии.

СВОЙСТВА

Кристаллы титана

Точка плавления 1671 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³, атомная плотность 5,71×1022 ат/см³. Пластичен, сваривается в инертной атмосфере. Применяемый в промышленности технический титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С. Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см3, предел прочности 300-550 Мн/м2 (30-55кгс/мм2), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м2 (115-165 кгс/мм2). Является парамагнетиком. Конфигурация внешней электронной оболочки атома Ti 3d24s2.

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей пленкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной). Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C.

Термообработка титановых сплавов

Для повышения эксплуатационных качеств проводится термическая термообработка титановых сплавов. Данный процесс существенно усложняется по причине того, что перестроение кристаллической решетки поверхностного слоя проходит при температуре выше 500 градусов Цельсия. Для плавов марки ВТ5 и ВТ6-С довольно часто проводят отжиг. Время выдержки может существенно отличаться, что зависит от толщины заготовки и других линейных размеров.

Детали, изготавливаемые из ВТ14, на момент применения должны выдерживать температуру до 400 градусов Цельсия. Именно поэтому термическая обработка предусматривает закалку с последующим старением. При этом закалка требует нагрева среды до температуры около 900 градусов Цельсия, в то время как старение предусматривает воздействие среды с температурой 500 градусов Цельсия на протяжении более 12-и часов.

Индукционные методы нагрева позволяют проводить самые различные процессы термической обработки. Примером можно назвать отжиг, старение, нормализацию и так далее. Конкретные режимы термической обработки выбираются в зависимости от того, какие нужно достигнуть эксплуатационные характеристики.

ЗАПАСЫ И ДОБЫЧА

Кристаллы титана

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтвержденные запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана их при 850 °C восстанавливают магнием.

Полученную титановую «губку» переплавляют и очищают. Ильменитовые концентраты восстанавливают в электродуговых печах с последующим хлорированием возникающих титановых шлаков.

Получение титана

Источник металла – диоксид титана.

Его образование происходит в процессе переработки ильменита. В результате образуется титановый шлак, который подвергается дальнейшей переработке. К концентрату добавляют серную кислоту, на выходе образуется двуокись титана.

Другой способ заключается в соединении с углеродом (кокс), хлором и дальнейшим нагреванием в присутствии магния.

Также применяют восстановление кальцием диоксида титана. Последний процесс заключается в проведении электрического тока, что ведет к разложению оксида кальция (кислород на аноде и собственно кальций).

Кислород выступает в роли окислителя, кальций, будучи металлом, переходит к катоду, попутно восстанавливая титан. Процесс происходит несколько раз. Исходом реакции служит титановая губка, требующая очищения.

ПРОИСХОЖДЕНИЕ

Титановая руда

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре — 0,57 % по массе, в морской воде — 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые. Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана. В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58.5%) и Украина (40.2%).

История открытия металла

Всё началось в 1791 году, когда, независимо друг от друга, одновременно У. Грегор (Англия) и М. Г. Клапрот (Германия) получили двуокись титана, но не сумели выделить из неё чистое вещество. Минералог и, по совместительству, сельский священник Грегор изучал чёрный железистый песок, найденный в окрестностях своего прихода. Результатом стало извлечение соединения титана — блестящих крупиц, которые названием «менакин» (от минерала менаканит) увековечили родные места англичанина.

Примерно в это же время химик Клапрот, изучая красные пески, привезённые из Венгрии, нашёл в минерале рутиле новое вещество и назвал его «титан». А, спустя несколько лет, доказал, что рутил и менакеновая земля — одинаковые соединения. В 1825 году шведским химиком Берцелиусом был получен первый образец металлического титана, но это не позволило продвинуться в исследовании свойств, так как примеси делали образец хрупким и неподходящим для механической обработки.

Только в 1925 году голландские химики ван Аркел и де Бур, применив термическое разложение иодида титана, не нашедшее широкого использования, получили вещество с 99,9% чистотой. Такой металл обладал пластичностью, его можно было раскатывать в листы, проволоку и фольгу. Это позволило начать полномасштабное изучение физических и химических свойств, привлечь внимание инженеров и строителей, наметить сферы применения. А уже в 1940 году появился кролловский процесс восстановления четырёххлористого титана магнием, успешно используемый и до сих пор.

ПРИМЕНЕНИЕ

Изделия из титана

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.

Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой теплопрочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т.п. Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.

Титан (англ. Titanium) — Ti

Молекулярный вес47.88 г/моль
Происхождение названияМинерал получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи.
IMA статусподтвержден в 2010 году

Виды титановых сплавов

Классификация титановых сплавов ведется по достаточно большому количеству признаков. Все сплавы можно разделить на несколько основных групп:

  1. Высокопрочные и конструкционные – прочные титановые сплавы, которые обладают также достаточно высокой пластичностью. За счет этого они могут применяться при изготовлении деталей, на которые оказывается переменная нагрузка.
  2. Жаропрочные с низкой плотностью применяются как более дешевая альтернатива жаропрочным никелевым сплавам с учетом определенного температурного интервала. Прочность подобного титанового сплава может варьироваться в достаточно большом диапазоне, что зависит от конкретного химического состава.
  3. Титановые сплавы на основе химического соединения представляют жаропрочную структуру с низкой плотностью. За счет существенного снижения плотности вес также снижается, а жаропрочность позволяет использовать материал при изготовлении летательных аппаратов. Кроме этого с подобной маркой связывают также высокую пластичность.

Маркировка титановых сплавов проводится по определенным правилам, которые позволяют определить концентрацию всех элементов. Рассмотрим некоторые из наиболее распространенных разновидностей титановых сплавов подробнее.

ФИЗИЧЕСКИЕ СВОЙСТВА

Цвет минералаСеребристо-серый
Цвет чертысеровато черный
Прозрачностьнепрозрачный
Блескметаллический
Спайностьнет
Твердость (шкала Мооса)4
Изломв зазубринах
Прочностьподатливый
Плотность (измеренная)4.503 г/см3
Радиоактивность (GRapi)0
Магнетизмпарамагнетик
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]