Характеристика технологических свойств металлов и сплавов


Классификация

Металлурги классифицируют сплавы металлов по нескольким критериям:

  1. метод изготовления:
      литые;
  2. порошковые;
  3. технология производства:
      литейные;
  4. деформируемые;
  5. порошковые;
  6. однородность структуры:
    • гомогенные;
    • гетерогенные;

  7. Виды сплавов по их основе

  8. вид металла – основы:
      черные (железо);
  9. цветные (цветные металлы);
  10. редких металлов (радиоактивные элементы);
  11. количество компонентов:
      двойные;
  12. тройные;
  13. и так далее;
  14. физико-химические свойства:
      тугоплавкие;
  15. легкоплавкие;
  16. высокопрочные;
  17. жаропрочные;
  18. твердые;
  19. антифрикционные;
  20. коррозионностойкие и др.;
  21. предназначение:
      конструкционные;
  22. инструментальные;
  23. специальные.

Металлы и сплавы на их основе имеют различные физико-химические характеристики.

Металл, имеющий наибольшую массовую долю, называют основой.

Определение и виды технологических свойств металлов и сплавов

Технологические свойства металлов и сплавов определяют их способность меняться под воздействием горячих или холодных способов обработки. В их основе лежат физико-механические характеристики материалов.

Выделяют такие технологические свойства металлов и сплавов, как:

  • О+бработка при помощи резки;
  • подверженность деформациям за счет ковкости, штампуемости, загибов, перегибов, отбортовки и пр.;
  • свариваемость;
  • литейные свойства;
  • способность к пайке;
  • упрочняемость и т. п.

Именно от технологических свойств металлов и сплавов зависит, как поведет себя заготовка в процессе обработки.

Остановимся более подробно на основных технологических свойствах.

Свариваемость.

Это технологическое свойство металлов и сплавов, благодаря которому они образуют друг с другом прочные соединения. Соединяются заготовки за счет расплавления материала и его последующего охлаждения. В зависимости от источника нагрева деталей сварку делят на газовую, дуговую, электроконтактную, ультразвуковую и пр.

Деформируемость.

Под этим технологическим свойством понимают способность металлов и сплавов меняться под воздействием пластических деформирующих операций, таких как гибка, ковка, штамповка, прокат, прессование и др. При этом целостность заготовок не нарушается. На это свойство материалов влияют их химический состав, механические свойства, скорость деформации, температура, при которой выполняются операции и т. п. Способ деформации выбирают после выполнения технологических испытаний, в процессе которых оценивают деформируемость различных сплавов и металлов.

Свойства сплавов

Свойства, которыми обладают металлические сплавы, подразделяются на:

  1. Структурно — нечувствительные. Они обуславливаются свойствами компонентов, и их процентным содержанием. К ним относятся :
      плотность;
  2. температура плавления;
  3. тепловые и упругие характеристики;
  4. коэффициент термического расширения;
  5. структурно — чувствительные. Определяются свойствами элемента — основы.
  6. Все сплавные материалы в той или иной мере проявляют характерные металлические свойства:
      блеск;
  7. пластичность;
  8. теплопроводность;
  9. электропроводность.
  10. Кроме того, свойства подразделяют на:
    • Химические, определяемые взаимоотношениями материала с химически активными веществами.
    • Механические, определяемые взаимодействием с другими физическими телами.

  11. Механические свойства

  12. Основными характеристиками сплавных материалов, влияющими на их пригодность для применения в той или иной инженерной конструкции, являются:
      Прочность-характеристика силы противостояния механическим нагрузкам и разрушению.
  13. Твердость-способность к сопротивлению внедрению в материал твердых тел.
  14. Упругость-возможность восстановить исходную форму тела после деформации, вызванной внешней нагрузкой.
  15. Пластичность — свойство, обратное упругости. Определяет способность материала к изменению формы тела без его разрушения под приложенной нагрузкой и сохранения этой новой формы.
  16. Вязкость — способность сопротивляться быстро возрастающим (ударным) нагрузкам

Для количественного выражения этих свойств вводят специальные физические величины и константы, такие, как предел упругости, модуль Гука, коэффициент вязкости и другие.

Свойства металластатья на тему

Свойства металла

Металлы являются категорией химических элементов, которым присущи специфические физические, химические, механические, а также технологические свойства.

К физическим свойствам материалов относится плотность, тем­пература плавления, электропроводность, теплопроводность, магнит­ные свойства, коэффициент температурного расширения и др.

Плотностью называется отношение массы однородного матери­ала к единице его объема.

Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые кон­струкции должны быть легкими и прочными.

Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плав­ления при сварке и тем они дешевле.

Электропроводностью называется способность материала хоро­шо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, осо­бенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важ­ным свойством, используемом в электроизоляционных материалах.

Теплопроводность— это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.

Магнитными свойствами т.е. способностью хорошо намагничи­ваться обладают только железо, никель, кобальт и их сплавы.

Коэффициенты линейного и объемного расширения характеризу­ют способность материала расширяться при нагревании. Это свой­ство важно учитывать при строительстве мостов, прокладке желез­нодорожных и трамвайных путей и т.д.

Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способнос­тью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различ­ных агрессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов — химической стойкостью.

Механические свойства металлов

Металлы обладают целым рядом механических свойств:

  • твердость металла

Твердость металла представляет собой его способность препятствовать проникновению в материал другого более твердого вещества.

Практически все металлы находятся в твердом состоянии. Исключением являются ртуть, галлий, цезий и франций.

  • прочность металла

Это свойство, которое определяет степень разрушения металла при воздействии на него физически или механически. Металлическим сплавом, который почти не деформируется при воздействии и отличается своей прочностью, является сталь. Самым непрочным металлом является ртуть.

  • вязкость металла

Считается, что чем больше металл сопротивляется при увеличивающихся ударных нагрузках, тем более он вязок.

  • хрупкость металла

Это свойство противоположно вязкости. Определяется в том случае, когда металл можно разрушить с применением силы. Самым хрупким металлом считается чугун.

  • пластичность металла

Чем большие нагрузки выдерживает металл, при этом, не разрушаясь и сохраняя придаваемую форму после того, как воздействие на материал прекратилось, тем больше металл пластичен.

  • упругость металла

Это свойство превращает собой способность металла возвращать свой первоначальный вид после воздействия на материал внешними силами. Упругость является важным качеством при изготовлении пружин, которые должны возвращать свою форму после их растяжки.

Для того чтобы определить механические свойства металлов, проводят механические испытания. Именно это позволяет выявить твердость, прочность, вязкость металла, а также другие механические свойства этого материала.

При статических испытаниях на растяжение определяют вели­чины, характеризующие прочность, пластичность и упругость мате­риала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диа­метром d0. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F0, МПа:

σ = P/F0,

Деформация характеризует изменение размеров образца под дей­ствием нагрузки, %:

ε =[(l1-l0)/l0]·100,

где l1 — длина растянутого образца.

Деформация может быть упру­гой (исчезающей после снятия нагрузки) и пластической (остаю­щейся после снятия нагрузки).

При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали.

Рис. 1. Статические испытания на растяжение: а – схема испытания;б – диаграмма растяжения

После проведения ис­пытаний определяются следующие характеристики механических свойств.

Предел упругости σу— это максимальное напряжение при кото­ром в образце не возникают пластические деформации.

Предел текучести σт— это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1).

Если на диаграмме нет площадки текучести(что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2— напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σв— это на­пряжение, отвечающее максимальной нагрузке, которую выдержи­вает образец при испытании.

Относительное удлинение после разрыва δ— отношение при­ращения длины образца при растяжении к начальной длине l0, %:

δ =[(lk-l0)/l0]·100,

где lк — длина образца после разрыва.

Относительным сужением после разрыва ψ называется умень­шение площади поперечного сечения образца, отнесенное к началь­ному сечению образца, %:

ψ =[(F0-Fk)/F0]·100,

где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.

Твердость металлов измеряется путем вдавливания в испытуе­мый образец твердого наконечника различной формы.

Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердо­сти по Бринеллю НВ определяется отношением нагрузки, действую­щей на шарик, к площади поверхности полученного отпечатка.

Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С). Вдавли­вание производится под действием двух нагрузок — предваритель­ной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.

В методе Виккерса применяют вдавливание алмазной четырех­гранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.

Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сече­ния F; Дж/м2:

KC=A/F

Испытания проводятся ударом специального маятникового коп­ра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.

Технологические свойства металла

Технологические свойства металла определяются изменениями механических и физических свойств металла. Это происходит в зависимости от обработки металла резанием, литьем, ковкой и другими способами. Каковы же технологические свойства металла?

  • ковкость металла

Представляет собой способность металла к деформации.

  • прокаливаемость металла

Это свойство определяется во время закалки металла и обуславливается тем, чем глубже металл можно закалить, тем большей прокаливаемостью он обладает.

  • текучесть металла

Текучесть представляет собой способность металла в жидком состоянии растекаться, заполняя определенную форму

  • свариваемость металла

Это свойство способно выявиться при соединении двух металлических частей посредством их сварки.

Свариваемость — технологическое свойство материалов (металлов) или их сочетаний образовывать в процессе сварки соединения, отвечающие конструкционным и эксплуатационным требованиям к ним. Это определение свариваемости следует отличать от свариваемости как простой возможности получить соединение. В настоящее время принципиально можно соединить сваркой большинство материалов, однако конструктора всегда интересует качество соединений.

Материал в процессе его сварки так или иначе изменяет свои свойства. Эти изменения зависят как от самого материала, его физико-химических свойств, так и от метода и режимов сварки. Причем следует учитывать, что степень воздействия на материал сопутствующих сварке явлений может быть весьма значительной. Поэтому без учета анализа свариваемости того или иного материала, условий, при которых происходит сам процесс сварки, особенностей конструкции сварного изделия или узла конструктор не может выбрать материал для изготовления изделия и рационально проектировать его.

Свариваемость — сложное, комплексное свойство материалов. Его нельзя определить каким-либо одним испытанием, одной методикой. Оценка свариваемости непосредственно связана с характеристикой материала, усло­виями его эксплуатации. Однако некоторые критерии оценки свариваемости являются достаточно общими для широкого круга металлов и сплавов.

Изменение химического состава и распределение элементов в свар­ном соединении. Металл при сварке может достаточно сильно нагреваться, а при термических методах происходит его плавление на небольшом локаль­ном участке. В таких условиях химический состав металла изменяется. Сте­пень изменений зависит от химической активности самого металла, состава окружавшей температуры, качества подготовки поверхности металла под сварку, диффузионных процессов в сварочной ванне.

Влияние сварочного нагрева на структуру и механические свойства основного металла. Наиболее заметные изменения структуры и свойств наблюдаются в металлах, имеющих полиморфные превращения. Последние могут протекать с изменением или без изменения объема. Стали перлитного и мартенситного классов, например, относятся к сплавам, обладающим ярко выраженными свойствами полиморфизма с изменением объема структуры в пределах 3—5%. Титановые сплавы претерпевают полиморфные превраще­ния, сопровождающиеся незначительным изменением объема (0,15%); не имеют подобных превращений тугоплавкие металлы и некоторые сплавы цветных металлов.

Вне зависимости от наличия и характера полиморфных превращений различают в сварном соединении три основные области:

первая — металл нагрет до температуры выше линии солидуса;

вторая — металл нагрет до температур, достаточных для протекания фазовых превращений или процес­сов рекристаллизации;

третья — с температурой ниже температуры протека­ния этих процессов.

Первая область включает в себя собственно шов и зону сплавления;

вторая представляет собой зону термического влияния;

третья — зону механического или термомеханического влияния. К третьей области примыкает ос­новной металл.

Рис. 2. Схема структур в околошовной зоне при сварке сталей:

1 — зона наплавленного металла; 2 — зона не­полного расплавления; 3 — зона перегрева, 4- зона нормализации; 5 — зона неполной перекри­сталлизации; 6 — зона рекристаллизации и вы­сокого отпуска; 7 — зона низкотемпературного отпуска

На рис. 2 приведена схема зон структурных изменений при­менительно к сварке углеродистой стали. Максимальные изменения структуры металла, его химиче­ского состава, а также вероят­ность возникновения различного рода дефектов наблюдаются в шве и зоне сплавления. Участок пере­грева характеризуется существен­ным увеличением зерна, наличием полных структурных и фазовых превращений. На участке полной перекристаллизации температура нагрева выше температуры фазовых превращений, однако интенсивность пре­вращений меньше, чем на участке перегрева, так же как и меньше время пребывания металла при этих температурах, поэтому существенного уве­личения зерна здесь не происходит. В рассматриваемых зонах закали­вающихся сплавов возможно образование типичных закалочных струк­тур. Связанное с этим снижение пластичности металла может служить причиной появления таких дефектов, как трещины, способствовать уменьшению прочности изделия.

В зоне частичной перекристаллизации в результате распада закалочных структур отмечается существенное снижение прочности металла, что необ­ходимо учитывать при сварке предварительно термообработанного или на­клепанного металла. Аналогичные явления могут наблюдаться в зоне высо­котемпературного отпуска. Зона низкотемпературного отпуска и механиче­ского влияния характеризуется менее существенными изменениями в метал­ле. В случае сварки металла в отожженном состоянии в этой зоне изменение свойств металла не фиксируется.

Участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева при сварке, называют зоной термического влияния. Величина ее зависит от свойств материала, его толщины, способа и режима сварки, характера источников сварочной тепло­ты. Чем больше, например, концентрация теплоты источника нагрева, выше его температура, скорость сварки, тем меньше зона влияния. Так, при дуго­вой сварке она меньше, чем при газовой. Минимальная площадь нагрева достигается при сварке электронным или световым лучами, обеспечиваю­щими высокую концентрацию тепловой энергии.

При снижении прочности материала в зоне высокого отпуска необходи­мо производить упрочняющую термообработку после сварки. Однако это не всегда возможно. Так, при изготовлении изделий больших габаритов из вы­сокопрочных материалов производить закалку после сварки трудно. Необхо­димо, кроме того, учитывать большую трудоемкость этой операции, существен­ные затраты на нее энергии и времени, а также деформацию изделия оттермообработки.

Другим способом повышения конструктивной прочности является фи­зическое упрочнение (нагартовка) шва и зоны термического влияния. Раз­личные варианты упрочняющей механической обработки, однако, примени­мы далеко не для всех конструкций. Высокая прочность изделий цилиндри­ческой формы обеспечивается применением спиральных швов. При «косом» расположении шва напряжения в нем, как известно, будут ниже, чем при продольном расположении швов.

Местное ослабление механических свойств металла, вызванное свароч­ным нагревом, компенсируется в ряде случаев утолщением сварных кромок, получаемых методом обработки металлов давлением или химическим фрезе­рованием. Однако при этом приходится считаться с неизбежным увеличени­ем массы конструкции и расхода металла.

На свойства сварного соединения влияет не только максимальная тем­пература, но и время пребывания металла в области повышенной температу­ры, так называемый термический цикл.

Структура и механические свойства сварного соединения изменяются не только под влиянием нагрева. Изменения происходят и при механических или термомеханических методах сварки. Часто повышение твердости и сни­жение пластичности в околошовной зоне происходит вследствие физическо­го упрочнения (наклепа). Подобные явления могут, например, иметь место при холодной и ультразвуковой сварке, когда процесс образования сварного соединения сопровождается значительными пластическими деформациями без существенного нагрева.

В связи с отличием механических свойств сварного соединения и ос­новного металла возникает необходимость в их оценке. Для этого проводят обычные механические испытания, однако образцы часто изготавливают таким образом, чтобы можно было определить механические показатели отдельных зон основного металла, примыкающего к шву, наплавленного металла или сварного соединения.

К эксплуатационным (служебным) свойствам относятся жаро­стойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.

Жаростойкость характеризует способность металлического ма­териала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.

Износостойкость — это способность материала сопротивлять­ся разрушению его поверхностных слоев при трении.

Теория сплавов

Металлическим сплавом называется материал, полученный сплавлением двух или более металлов или металлов с неметаллами, обла­дающий металлическими свойствами. Вещества, которые образуют сплав называются компонентами.

Фазой называют однородную часть сплава, характеризующуюся определенными составом и строением и отделенную от других частей сплава поверхностью раздела. Под структурой понимают форму размер и характер взаимного распо­ложения фаз в металлах и сплавах. Структурными составляющими называют обособленные части сплава, имеющие одинаковое строе­ние с присущими им характерными особенностями.

Виды сплавов по структуре. По характеру взаимодействия ком­понентов все сплавы подразделяются на три основных типа: механи­ческие смеси, химические соединения и твердые растворы.

Механическая смесь двух компонентов А и В образуется, если они не способны к взаимодействию или взаимному растворению. Каждый компонент при этом кристаллизуется в свою кристалличес­кую решетку. Структура механических смесей неоднородная, состо­ящая из отдельных зерен компонента А и компонента В. Свойства механических смесей зависят от количественного соотношения ком­понентов: чем больше в сплаве данного компонента, тем ближе к его свойствам свойства смеси.

Химическое соединение образуется когда компоненты сплава А и В вступают в химическое взаимодействие. При этом при этом соотношение чисел атомов в соединении соответствует его химичес­кой формуле АmВn . Химическое соединение имеет свою кристалли­ческую решетку, которая отличается от кристаллических решеток компонентов. Химические соединения имеют однородную структу­ру, состоящую из одинаковых по составу и свойствам зерен.

При образовании твердого раствора атомы одного компонента входят в кристаллическую решетку другого. Твердые растворы заме­щения образуются в результате частичного замещения атомов крис­таллической решетки одного компонента атомами второго (рис. 6, б).

Твердые растворы внедрения образуются когда атомы растворенного компонента внедряются в кристаллическую решетку компонента -растворителя (рис. 6, в). Твердый раствор имеет однородную струк­туру, одну кристаллическую решетку. В отличие от химического соединения твердый раствор существует не при строго определен­ном соотношении компонентов, а в интервале концентраций. Обо­значают твердые растворы строчными буквами греческого алфавита: α, β, γ, δ и т. д.

Диаграмма состояния. Диаграмма состояния показывает строе­ние сплава в зависимости от соотношения компонентов и от темпера­туры. Она строится экспериментально по кривым охлаждения спла­вов (рис. 8). В отличие от чистых металлов сплавы кристаллизуются не при постоянной температуре, а в интервале температур. Поэтому на кривых охлаждения сплавов имеется две критические точки. В верхней критической точке, называемой точкой ликвидус (tл), начина­ется кристаллизация. В нижней критической точке, которая называ­ется точкой солидус (tc), кристаллизация завершается. Кривая охлаж­дения механической смеси (рис. 8, а) отличается от кривой охлаждения твердого раствора (рис. 8, б) наличием горизонтального участка. На этом участке происходит кристаллизация эвтектики. Эвтектикой на­зывают механическую смесь двух фаз, одновременно кристаллизовав­шихся из жидкого сплава. Эвтектика имеет определенный химичес­кий состав и образуется при постоянной температуре.

Диаграмму состояния строят в координатах температура-концен­трация. Линии диаграммы разграничивают области одинаковых фазо­вых состояний. Вид диаграммы зависит от того, как взаимодейству­ют между собой компоненты. Для построения диаграммы состояния используют большое количество кривых охлаждения для сплавов раз­личных концентраций. При построении диаграммы критические точ­ки переносятся с кривых охлаждения на диаграмму и соединяются линией. В получившихся на диаграмме областях записывают фазы или структурные составляющие. Линия диаграммы состояния на ко­торой при охлаждении начинается кристаллизация сплава называется линией ликвидус, а линия на которой кристаллизация завершается — линией солидус.

Виды диаграмм состояния. Диаграмма состояния сплавов, обра­зующих механические смеси (рис. 9), характеризуется отсутствием растворения компонентов в твердом состоянии. Поэтому в этом спла­ве возможно образование трех фаз: жидкого сплава Ж, кристаллов А и кристаллов В. Линия АСВ диаграммы является линией ликвидус: на участке АС при охлаждении начинается кристаллизация компонента А, а на участке СD — компонента В. Линия DСВ является линией солидус, на ней завершается кристаллизация А или В и при постоян­ной температуре происходит кристаллизация эвтектики Э. Сплавы концентрация которых соответствует точке С диаграммы называются эвтектическими, их структура представляет собой чистую эвтектику.

Сплавы, расположенные на диаграмме левее эвтектического, называ­ются доэвтектическими, их структура состоит из зерен А и эвтекти­ки. Те сплавы которые на диаграмме расположены правее эвтектичес­кого, называются заэвтектическими, их структура представляет собой зерна В, окруженные эвтектикой.

Диаграмма состояния сплавов с неограниченной растворимос­тью компонентов в твердом состоянии изображена на рис. 10. Для этого сплава возможно образование двух фаз: жидкого сплава и твер­дого раствора а. На диаграмме имеется всего две линии, верхняя является линией ликвидус, а нижняя — линией солидус.

Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии показана на рис 11. В этом сплаве могут существовать три фазы — жидкий сплав, твердый раствор α компонента В в компоненте А и твердый раствор β компонента А в компоненте В. Данная диаграмма содержит в себе элементы двух пре­дыдущих. Линия АСВ является линией ликвидус, линия АDСЕВ — линией солидус. Здесь также образуется эвтектика, имеются эвтек­тический, доэвтектический и заэвтектический сплавы. По линиям FD и EG происходит выделение вторичных кристаллов αIIи βII(вслед­ствие уменьшения растворимости с понижением температуры). Про­цесс выделения вторичных кристаллов из твердой фазы называется вторичной кристаллизацией.

Диаграмма состояния сплавов, образующих химическое соеди­нение (рис. 12) характеризуется наличием вертикальной линии, соот­ветствующей соотношением компонентов в химическом соединении АmВn. Эта линия делит диаграмму на две части, которые можно рас­сматривать как самостоятельные диаграммы сплавов, образуемых одним из компонентов с химическим соединением. На рис. 12 изоб­ражена диаграмма для случая, когда каждый из компонентов образу­ет с химическим соединением механическую смесь.

Основные виды сплавов

Самые многочисленные виды сплавов металлов изготавливаются на основе железа. Это стали, чугуны и ферриты.

Сталь — это вещество на основе железа, содержащее не более 2,4% углерода, применяется для изготовления деталей и корпусов промышленных установок и бытовой техники, водного, наземного и воздушного транспорта, инструментов и приспособлений. Стали отличаются широчайшим диапазоном свойств. Общие из них — прочность и упругость. Индивидуальные характеристики отдельных марок стали определяются составом легирующих присадок, вводимых при выплавке. В качестве присадок используется половина таблицы Менделеева, как металлы , так и неметаллы. Самые распространенные из них — хром, ванадий, никель, бор, марганец, фосфор.

Легированная сталь

Если содержание углерода более 2,4% , такое вещество называют чугуном. Чугуны более хрупкие, чем сталь. Они применяются там, где нужно выдерживать большие статические нагрузки при малых динамических. Чугуны используются при производстве станин больших станков и технологического оборудования, оснований для рабочих столов, при отливке оград, решеток и предметов декора. В XIX и в начале XX века чугун широко применялся в строительных конструкциях. До наших дней в Англии сохранились мосты из чугуна.

Чугунные радиаторы

Вещества с большим содержанием углерода, имеющие выраженные магнитные свойства, называют ферритами. Они используются при производстве трансформаторов и катушек индуктивности.

Сплавы металлов на основе меди, содержащие от 5 до 45% цинка, принято называть латунями. Латунь мало подвержена коррозии и широко применяется как конструкционный материал в машиностроении.

Желтая латунь

Если вместо цинка к меди добавить олово, то получится бронза. Это, пожалуй, первый сплав, сознательно полученный нашими предками несколько тысячелетий назад. Бронза намного прочнее и олова, и меди и уступает по прочности только хорошо выкованной стали.

Вещества на основе свинца широко применяются для пайки проводов и труб, а также в электрохимических изделиях, прежде всего, батарейках и аккумуляторах.

Двухкомпонентные материалы на основе алюминия, в состав которых вводят кремний, магний или медь, отличаются малым удельным весом и высокой обрабатываемостью. Они используются в двигателестроении, аэрокосмической промышленности и производстве электрокомпонентов и бытовой техники.

Изменение технологических свойств на примере стали

Наиболее распространенным материалом является сталь. На технологические свойства стальных сплавов влияет их химический состав – входящие в него примеси могут повышать или понижать отдельные характеристики материала:

  • Чем больше содержание в составе сплава углерода, тем выше его прокаливаемость и ниже восприимчивость к ковке. Ковка и прокатка возможны для металлов и сплавов, в которых присутствует не более 1,4 % этого химического элемента.
  • Марганец понижает теплопроводность металлов и сплавов и, как следствие, возможность их сваривания. Однако при равномерном медленном нагревании такие материалы прекрасно подходят для ковки.
  • Никель положительно сказывается на пластичных технологических свойствах металлов и сплавов, материалы, в которых он присутствует, хорошо поддаются ковке. Однако при нагреве никель способствует образованию окалины. Она не разрушается во время ковки, проникает в металл и снижает качество готовых изделий.
  • Хром способствует повышению прочности металлов и сплавов, следовательно, заготовки, в составе которых он присутствует, не следует обрабатывать при помощи ковки или проката, так как велика вероятность возникновения трещин.
  • Большое содержание в составе металлов и сплавов молибдена снижает такое их технологическое свойство, как теплопроводность. Этот момент важно учитывать при выборе температурного режима обработки, нагрев и охлаждение должны выполняться при строгом соблюдении предписанных технологией требований. Ковка возможна при применении более мощного оборудования
  • Ванадий же, напротив, повышает качество ковки, увеличивает устойчивость сталей к перегреву.

Отрицательно сказываются на технологических свойствах металлов и сплавов присутствие в их составе серы и фосфора. Их высокое содержание становится причиной красноломкости (ломкости при нагревании) и хладноломкости (ломкости при охлаждении) заготовок. Несмотря на то, что полностью очистить сплавы от присутствия этих химических элементов невозможно, на производстве стремятся к максимально возможному снижению их содержания в составе.

Технологические свойства металлов и сплавов напрямую зависят от их химического состава, поэтому, прежде чем выбрать тот или иной способ обработки, на производстве тщательно анализируют состав подлежащего обработке материала. Если этого не сделать, вероятно возникновение проблем как в процессе обработки, так и при дальнейшем использовании готовых изделий.

Цинковые сплавы

Сплавы на основе цинка отличаются низкими температурами плавления, стойкостью к коррозии и отличной обрабатываемостью. Они применяются в машиностроении, производстве вычислительной и бытовой техники, в издательском деле. Хорошие антифрикционные свойства позволяют использовать цинковые сплавы для вкладышей подшипников.

Титан не самый доступный металл, он сложен в производстве и тяжело обрабатывается. Эти недостатки искупаются его уникальными свойствами титановых сплавов: высокой прочностью, малым удельным весом, стойкостью к высоким температурам и агрессивным средам. Эти материалы плохо поддаются механической обработке, но зато их свойства можно улучшить с помощью термической обработки.

Легирование алюминием и небольшими количествами других металлов позволяет повысить прочность и жаростойкость. Для улучшения износостойкости в материал добавляют азот или цементируют его.

Область применения титановых сплавов

Металлические сплавы на основе титана используются в следующих областях:

    • аэрокосмическая;
  1. химическая;
  2. атомная;
  3. криогенная;
  4. судостроительная;
  5. протезирование.

Алюминиевые сплавы

Если первая половина XX века была веком стали, то вторая по праву назвалась веком алюминия.

Трудно назвать отрасль человеческой жизнедеятельности, в которой бы не встречались изделия или детали из этого легкого металла.

Алюминиевые сплавы подразделяют на:

    • Литейные (с кремнием). Применяются для получения обычных отливок.
  1. Для литья под давлением (с марганцем).
  2. Увеличенной прочности, обладающие способностью к самозакаливанию (с медью).

Основные преимущества соединений алюминия:

    • Доступность.
  1. Малый удельный вес.
  2. Долговечность.
  3. Устойчивость к холоду.
  4. Хорошая обрабатываемость.
  5. Электропроводность.

Основным недостатком сплавных материалов является низкая термостойкость. При достижении 175°С происходит резкое ухудшение механических свойств.

Еще одна сфера применения — производство вооружений. Вещества на основе алюминия не искрят при сильном трении и соударениях. Их применяют для выпуска облегченной брони для колесной и летающей военной техники.

Весьма широко применяются алюминиевые сплавные материалы в электротехнике и электронике. Высокая проводимость и очень низкие показатели намагничиваемости делают их идеальными для производства корпусов различных радиотехнических устройств и средств связи, компьютеров и смартфонов.

Слитки из алюминиевых сплавов

Присутствие даже небольшой доли железа существенно повышает прочность материала, но также снижает его коррозионную устойчивость и пластичность. Компромисс по содержанию железа находят в зависимости от требований к материалу. Отрицательное влияние железа скомпенсируют добавлением в состав лигатуры таких металлов, как кобальт, марганец или хром.

Конкурентом алюминиевым сплавам выступают материалы на основе магния, но ввиду более высокой цены их применяют лишь в наиболее ответственных изделиях.

Технологические испытания металлов и сплавов

Технологические испытания включают в себя испытания на изгиб, осадку, сплющивание, бортование, загиб и т. д. Многие пробы и испытания проводятся в соответствии с разработанными и утвержденными стандартами.

В зависимости от результатов технологических испытаний принимают решение о возможности изготовления деталей и конструкций соответствующего качества из имеющегося материала с применением той или иной операции, выполняемой на данном производстве.

Испытание на изгиб проводится в соответствии с требованиями ГОСТ 14019-80. С его помощью определяют, способны ли металлы и сплавы выдерживать изгибание без разрушения. Образец помещают под пресс и изгибают до необходимого угла. Если угол изгиба равен 180°, то материал может выдерживать предельную деформацию. О том, что образец прошел испытание, свидетельствует отсутствие трещин, надрывов, расслоений и других дефектов

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]