Подшипники: определение, классификация, виды и назначение


Функционал подшипников очень широк. Они незаменимы для обеспечения надежной фиксации, легкого вращения или качения, уменьшения трение между двумя частями конструкции. Простое изобретение является одним из ведущих в промышленности и используется повсеместно. От его качества во многом зависит работоспособность и износостойкость машины. Многообразие таких сборочных узлов также велико, как и назначение. Что это такое – подшипник, какие виды существуют и их классификация по основным признакам, мы расскажем в этой статье и покажем фотографии.

Что представляет собой опора

По своей сути деталь является основой узла сбора. Ее основная функция состоит в том, чтобы обеспечивать надежный упор и поддерживать определенную подвижную часть конструкции. То, насколько жесткой будет такая фиксация, зависит от устройства, материала и многих других факторов.

Закрепление положения в пространстве позволяет обеспечить вращательные движения, качение при минимальном сопротивлении. Так нагрузка передается от подвижной части агрегата к другим, сохраняя износостойкость.

Какие бывают виды и типы подшипников

Все сборочные узлы можно классифицировать по принципу работы. Две основные группы составляют приборы, обеспечивающие покачивание и скольжение. Именно их чаще всего используют в машиностроении. Первая может быть представлена шариковыми и роликовыми устройствами.

Отдельное внимание заслуживают магнитные конструкции. Принцип их работы отличен от остальных, и используют их реже. К тому же в силу функциональных особенностей они должны сопровождаться запасными узлами.

Подшипники – это детали, помогающие получать от машины максимальный КПД, сохраняя ее работоспособность без специального ремонта и обслуживания.

Опоры скольжения

Эта группа деталей позволяют свободно скользить при трении двух соприкасающихся поверхностей. При этом используются разные смазки – масла, вода, химические вещества, графит и некоторые газы. Конструктивно такие приспособления могут быть как целостными, так и разборными. Производятся в комплекте со втулкой и соединяющей частью.

Устройства по типу качения

Такие узлы делают в виде двух колец, тел, обеспечивающих эффект покачивания, и сепаратора. Изготавливаются согласно установленной стандартизации, что позволяет использовать их в большинстве автомобилей, сложной технике и самолетах.

Шарикоподшипники

Функционально входят в группу узловых частей, работающих по принципу качения. Шариковые тела располагаются на поверхности наружных колец деталей. Во время работы создают небольшой момент трения, а значит практически не ограничивают скорость вращения.

Роликоподшипники

Входят в группу качения, но в их основе шарики заменены на ролики. Это позволяет им выдерживать гораздо большие нагрузки. Такая работоспособность высоко ценится при конструировании промышленных станков и железнодорожном строении.

Магнитные опоры

Работают по принципу левитации притяжения, обеспечивая полную бесконтактность двух соседних частей. Могут использоваться в условиях агрессивной окружающей среды, но пока не так распространены, как уже перечисленные виды. Если не подстраховывать такую конструкцию другой, более традиционной, можно в одночасье потерять всю машину.

Подшипники скольжения

Основная задача таких деталей – обеспечивать свободное трение между двумя сопряженными участками. Использовать их можно как для подвижных, так и для неподвижных поверхностей, что значительно увеличивает функциональные возможности применения.

Разновидности опорных узлов скольжения

Этот тип узловой части может быть разъемным и целостным. Первый состоит из двух вкладышей, установленных в полуотверстия основания и крышки. Они могут иметь толстую или тонкую стенку относительно наружного диаметра. Толщину определяет используемый материал. Например, тонкостенные чаще всего делают из легкой малоуглеродистой стали. Конструкция неразъемного предполагает особую сборку, при которой в детали высверливается отверстие, в которое запрессовывается металлическая втулка.

Разновидности

Наиболее распространенной является классификация, основанная на способности восприятия нагрузки по направлению. В этом случае устройства разделяют на 3 группы:

  • • Радиальные – принимающие перпендикулярную нагрузку с оси.
  • • Упорные – берут на себя весь груз.
  • • Радиально-упорные – сочетают свойства тех и других.

Существуют и еще несколько вариантов разделения узлов, но они являются скорее второстепенными.

Стандарты опор скольжения

Качество изготовления деталей, используемый в работе материал и другие условия производства описаны в Межгосударственном стандарте ISO и ГОСТе. Первый – соответствует международным требованиям, действующим в 165 странах мира. Второй – является внутренним для Российской Федерации. Все узловые части, представленные , проходят обязательную сертификацию на соответствие заявленным правилам.

Смазки подшипников скольжения

Этот вид призван обеспечивать свободное трение между двумя частями конструкции. Для нормальной работы используется один из 4-х типов смазочных материалов:

  • • Жидкие – различные синтетические и минеральные масляные жидкости для металлических опор или вода для неметаллических.
  • • Пластичные – изготавливаются из базового масла и загустителя.
  • • Твердые – используются в условиях сухого и граничного соприкосновения. В качестве материала чаще всего выбирается графит и дисульфид молибдена.
  • • Газообразные – требуются, когда конструкция работает под слабой нагрузкой, но в жарких условиях и с большим количеством оборотов.

Преимущества и недостатки

Среди плюсов можно выделить их высокую надежность при работе на большой скорости и небольшие размеры. Что касается минусов, то отметим необходимость постоянной регулировки количества смазки, пониженный КПД и производство из дорогих материалов.

Где применяются устройства

Сфера применения приборов широка. Довольно часто их используют в высокоскоростной аппаратуре, паровых и турбинных установках, в оборудовании систем навигации и других точных приборах.

В чем разница между подшипниками качения и подшипниками скольжения

В подшипниках качения главенствующую роль играет трение качения, т.к. трение скольжения между сепаратором и телами качения, как правило, невелико. Поэтому в подшипниках качения, по сравнению с подшипниками скольжения, наблюдаются значительно меньшие потери энергии, а также меньший механический износ.

Широкое применение подшипников качения обусловлено рядом их преимуществ по сравнению с подшипниками скольжения меньшим моментом сопротивления вращению, особенно в начале движения, а также при малых и средних частотах вращения; большей несущей способностью на единицу ширины подшипника; полной взаимозаменяемостью; простотой эксплуатации; меньшим расходом смазочных материалов и цветных металлов; более низкими требованиями к материалам и термообработке валов.

Подшипники качения

Эти узловые опоры состоят из двух колец, но кроме них, в основе всегда есть тела, обеспечивающие покачивание, и сепаратор. На внутренней поверхности расположены желоба, выполняющие роль дорожек. В редких случаях сепаратор может отсутствовать, но тогда и уровень сопротивления становится выше.

Назначение

Основная цель устройств – служить упором для вращающихся частей механизмов. Именно поэтому они являются более популярными, чем узлы, обеспечивающие скольжение. Используются в электрических машинах и других конструкциях, где необходимо обеспечить износостойкость, длительную работу без смазки.

Классификация

Такие детали могут разделяться по нескольким признакам, но самым распространенным является деление по форме тел и приему нагрузки. К первой группе относятся уже упоминаемые ранее шариковые и роликовые узловые опоры. Вторая схожа с делением подшипников скольжения по типу нагрузки.

Технические характеристики

Для выбора того или иного устройства необходимо учесть несколько основных параметров. Самыми важными являются:

  • • Габаритные размеры, установленные стандартом ISO.
  • • Базовое и полное обозначение, включающее в себя буквенно-цифровой код, указывающий на тип, размер и конструкцию.
  • • Допуски, соответствующие классам.
  • • Зазор, общее расстояние, на которое одно кольцо может переместиться относительно другого.

Подобрать необходимую деталь в соответствии со всеми характеристиками предлагает . В нашем ассортименте представлены самые разные подшипники, подходящие для любых механизмов.

Преимущества и недостатки

Главными плюсами являются: небольшая стоимость и массовое производство. При необходимости их легко можно заменить, а значит монтаж и обслуживание машин станет более удобным. Смазочные материалы используются в небольших количествах, что позволяет не тратить много времени на уход за механизмами.

К недостаткам относят:

  • • Излишнюю чувствительность к вибрации и ударным нагрузкам.
  • • Чрезмерный нагрев и опасность разрушения на высоких скоростях.
  • • Большие радиальные размеры.
  • • Шум во время работы.

Несмотря на существенные недостатки, сегодня они являются самыми популярными во всем мире.

Скольжение: рабочие характеристики, достоинства и недостатки

Их конструкция отличается от качения, потому что фактически две основные части (кольца) не катятся на роликах, а скользят друг по другу. Результат – увеличенная площадь трения, что, соответственно, делает эту силу намного больше. Это основной минус, который закреплен за изделием. Если будет недостаточное количество смазывающего вещества, то металл будет нагреваться, что может привести к поломке.

Рассмотрим достоинства и недостатки изделия.

Плюсы:

  • При большой скорости вращения они очень надежны, поэтому их применяют для турбин, самолетостроения и прочих важных областях. Это обеспечивается тем, что тело качения (шарик) не может выскочить из системы при больших оборотах. Фактически это очень примитивная конструкция, а чем она проще, тем меньше может случиться неисправностей.
  • Большая площадь соприкасающейся поверхности приводит к тому, что на нее мало действуют вибрации. Это также обеспечивается плотным слоем масла. Такая прослойка делает любые удары и вибрационные вмешательства фактически не ощутимыми.
  • Малые радиальные размеры.
  • Отлично сочетается с коленчатым валом, крепится на его шейку и передает крутящий момент.

Есть и недостатки:

  • Проигрывает в классификации подшипников по виду трения, потому что механизм сильно трется, особенно при пуске или небольших скоростях. Металл нагревается, теряются его качества, он может начать трескаться или стираться.
  • Износ выше, чем у узла качения, чаще требуются замены.
  • Для функционирования необходимо постоянно пополнять смазку. Это может быть либо автоматическое подведение, либо вручную.

Рабочие характеристики и строение

Внутренняя втулка, то есть кольцо меньшего диаметра, обычно создается из материала, обладающего антифрикционными свойствами. У них низкий коэффициент трения, что частично устраняет проблему всех механизмов скольжения. Корпус же создается из стали. Он плотно насаживается на втулку. Небольшой зазор между ними предназначен для того, чтобы туда поступала смазка. Система предполагает автоматическую подачу. Слой этой жидкости определяется в зависимости от показателей давления, температуры и фактического расхода.

По типу подшипников скольжения и их применению можно определить степень трения:

  • сухое;
  • граничное;
  • гидродинамическое;
  • газодинамическое.

Первые наиболее подвержены скорому износу. Также следует учесть, что при ряде действий, например, при запуске или выключении, при медленном вращении, все изделия относятся ко второй разновидности, то есть находятся на предельных возможностях.

На долговечность узла влияют не только условия эксплуатации, но и характер используемого смазочного вещества. Его функции в следующем:

  • охлаждение, потому что при движении образуется тепло, а при его избытке могут пострадать все рядом находящиеся металлические запчасти;
  • снятие силы трения;
  • защита детали от влияния извне – негативно могут отразиться не только частицы пыли и другие загрязнения, но и влага;
  • предотвращение ржавления.

Еще одна классификация – на виды упорных подшипников скольжения по используемой смазки. Она может быть сухой, классической влажной, газовой или пластичной. Наиболее инновационная разработка – это использование пористого металла. Такой материал имеет поры. Он как-бы пропитан сухим веществом, которое меняет свое агрегатное состояние при нагреве. С первых движений при разогреве конструкции из небольших отверстий в металлическом корпусе ли во втулке начинает сочиться жидкость. После работы происходит остывание, вместе с этим смазка снова принимает порошкообразное состояние.

Посмотрим изображение изделия:

Но предложенная структура с порошком, меняющим свои свойства при нагреве, – скорее исключение из правил. Это трудное устройство, для которого необходимо применять дорогостоящие материалы. Классикой считаются два другие подвида. Виды подшипников скольжения и их назначение, применение, в зависимости от подачи смазывающего вещества:

  • гидростатические – поддерживать уровень жидкости нужно извне, в механизм поступает запрос о низком ее количестве, он реализуется другими конструкциями;
  • гидродинамические – более современные и самобытные, их отличительный признак – они сами по мере вращения контролируют давление, когда оно становится ниже, чем должно быть, то насос автоматически срабатывает, емкость, подведенная снаружи, начинает сжиматься, перенося необходимое количество смазки.

И последняя классификация является определением конструктивных особенностей. Корпус может вращаться вокруг разных втулок. Подшипники могут быть:

  • Сферические. Сфера внутри имеет значительные отклонения от плоскости, поэтому разрешен перекос в процессе движения. Но эффективность будет утверждена только при небольших скоростях. При высоких обязательно нужна крепкая опора.
  • Упорные. Они воспринимают только осевые нагрузки.
  • Линейные. Этот тип подшипников устанавливается в вентиляторах и других системах, где нужно классическое вращение по кругу.

Теперь рассмотрим менее общие классификации изделий.

Шарикоподшипник

В качестве тела, обеспечивающего покачивание, в этом типе деталей используются шарики, свободно перемещающиеся по дорожкам. Применяются для вращающихся конструкций, в которых не нужно сильное трение между двумя движущимися частями.

Описание

Узел состоит из 2 колец, изготовленных из стали. Вместе они образуют некое «ложе» для шариковых тел. При этом внутренняя часть устройства фиксируется на валу, а наружная – на опоре. При всей простоте конструкции, они широко распространены в промышленности.

Разновидности

Какие бывают типы подшипников с шариковыми телами, можно предположить исходя из общей классификации. Как и большинство деталей качения их разделяют на: радиальные, упорные и с 4-х точечным контактом. Особенность последних заключается в способности воспринимать нагрузку в двух направлениях оси или одновременную комбинированную и осевую с одной стороны.

Применение

Разные виды применяют в электродвигателях и различной бытовой технике, в станках для обработки дерева, в медицинском оборудовании, станочных шпинделях и насосах. Шариковые с 4-х точечным контактом широко распространены в редукторах.

Подшипники с разъемными обоймами

Для несения повышенных осевых и радиально-осевых нагрузок применяют подшипники с разъемной в экваториальной плоскости наружной (рис. 757, а) или, реже, внутренней (вид б) обоймой. Разъем позволяет увеличить число шариков и углубить беговые канавки.

При чисто радиальной нагрузке в подшипниках этого типа образуются три точки контакта — две на разъемной и одна на целой обойме (отсюда их условное название «трехконтактные» подшипники). Правильное качение шариков одновременно по трем поверхностям, разумеется, невозможно. Тормозящиеся двухточечным соприкосновением с разъемной обоймой шарики проскальзывают по целой обойме, поэтому трехконтактные подшипники применяют для несения осевой нагрузки или радиальной при одновременном действии осевой. Осевая нагрузка прижимает шарики лишь к одной поверхности (вид в), на другой стороне шарики отходят от поверхности беговой дорожки, и в итоге получается двухконтактный подшипник.

Угол β контакта зависит от соотношения радиальной и осевой нагрузки. При чисто осевой нагрузке в исполненных конструкциях β = 20—30°.

Разъемные обоймы обычно стягивают крепежными гайками, причем взаимное центрирование обойм происходит по посадочной поверхности.

Подшипники, предназначенные для несения чисто осевых нагрузок, устанавливают в корпусах с радиальным зазором. В этом случае применяют подшипники с полуобоймами, соединенными наглухо с помощью гильзы, завальцованной на торцы (вид г).

Роликовые подшипники и их разновидности

По своему строению эти опоры схожи с предыдущим типом, но вместо шариков здесь используется тело, по форме напоминающее ролик. Так прибор может принимать на себя более серьезную нагрузку.

Описание

Конструкция разработана таким образом, что она показывает стойкость к радиальному давлению, но при этом скорость прохождения ролика по дорожке ничуть не уступает шарикоподшипникам. Единственное, на что следует обратить внимание – осевая нагрузка. Чтобы сделать устройство более устойчивым к ней, элемент качения заменяют на конический.

Виды

Классифицируют этот тип по используемому телу. Отдельно выделяют:

  • • Цилиндрические.
  • • Конические.
  • • Игольчатые.
  • • Сферические.

Применение

Роликоподшипники часто используют в насосах, мощных редукторах, в железнодорожной промышленности и автопроме. Все виды роликовых подшипников в картинках представлены на сайте mirpl.ru.

Подшипники с встроенными уплотнениями

Промышленность выпускает несколько типов радиальных шариковых подшипников с встроенными уплотнениями.

Односторонние (рис. 758, а, б) и двусторонние (виды в—е) защитные шайбы предохраняют подшипники от проникновения грязи; во внутренних установках они служат для защиты подшипников от избыточной смазки.

Для уплотнения подшипников в концевых установках применяют шайбы, опрессованные эластомерами (виды ж, з), или фетровые сальники (виды и, к).

Подшипники одноразовой смазки, во внутреннюю полость которых при выпуске с завода закладывают мерное количество пластичного смазочного материала, уплотняют шайбами (виды ж, з) или двусторонними фетровыми сальниками (виды л—м).

Магнитные опорные узлы

В отличие от других, такое устройство работает на принципе магнетической левитации. Это обеспечивает полную бесконтактность между двумя частями конструкции.

Описание

Элементы выполнены таким образом, что вал парит, не соприкасаясь с другими поверхностями. Для обеспечения надежной работы предусмотрено большое количество датчиков, координирующих все движения.

Разновидности

Выделяют две группы: активные и пассивные. В первый состав входит непосредственно подшипник и электронная система. Работа второй группы строится за счет присутствия постоянных магнитов. Они менее устойчивы, чем в случае с электронной системой контроля, поэтому применяются гораздо реже.

Применение

Использовать такие устройства можно в газовых центрифугах, турбомолекулярных насосах, в различных электромагнитных подвесах, в криогенной технике, в вакуумных приборах и других сложных механизмах.

Преимущества и недостатки

В качестве плюсов выделим износостойкость деталей и возможность их использования в агрессивной окружающей среде, в том числе в космосе. Минусы проявляются в нестабильности магнитного поля, из-за которого дополнительно в механизм встраиваются традиционные устройства качения или скольжения.

Процедура смазывания

Согласно сведениям, выделяют несколько способов смазывания подшипниковых узлов с применением разных материалов. Все смазочные материалы делятся на две большие группы – жидкие и пластичные материалы, в зависимости от консистенции и состава.

Смазка подшипников качения с помощью жидких материалов подразумевает применение разных способов:

— изделие погружают в ванну, наполненную маслом, или же используют метод разбрызгивания; — под воздействием центробежных сил; — капельная обработка; — использование эффекта «масляный туман».

Использование пластичных материалов подразумевает под собой заполнение всего внутреннего пространства. Герметизированная модель с контактным уплотнением с двух сторон и большим количеством (запасом) смазки отличается продолжительным сроком эксплуатации. Такие изделия не нуждаются в частом обслуживании, так как количество смазки рассчитано на весь период службы.

Другие виды

Рассмотрим еще несколько типов узловых опор, отличающихся некоторыми функциональными особенностями.

Конические подшипники

Это разновидность роликовых, но тело здесь изготавливается в виде конуса и устанавливается на дорожку под углом. Прекрасно справляются как с радиальными, так и с осевыми нагрузками.

Самоустанавливающиеся двухрядные

Отличаются от других низким трением, что делает возможным их эксплуатацию на самых высоких скоростях. Устанавливаются на коническую или цилиндрическую шейку вала.

Игольчатый тип

Здесь в качестве тела качения выступает тонкий и длинный ролик. Элементы выглядят более компактными, но при этом обеспечивают большую производительность и надежность, экономичны в использовании.

Упорные шарикоподшипники

Основное назначение – восприятие осевых нагрузок. Относится к группе шариковых опор, поэтому внешне полностью соответствует именно им.

Сферические

Обеспечивают слабое трение. В конструкцию входит одновременно два ряда роликов, расположенных симметрично.

Термостойкие

Предназначены для работы в жарких условиях. Отличаются надежностью и простотой эксплуатации.

Плавающая узловая опора

Позволяет валу перемещаться линейно. Воспринимает на себя только радиальную нагрузку. Легко регулируется и прост в эксплуатации.

Скоростные устройства

Обеспечивает нормальное качение на высоких оборотах. Отличаются отлчным качеством и износостойкостью.

Шпиндельный

Имеет хорошую грузоподъемность. Часто используется в вентиляторах, мощных насосах и станках, поскольку хорошо работает на значительных оборотах.

Высокоточные

Имеют высокие эксплуатационные характеристики, благодаря которым часто используются в авиастроении, космонавтике и военной промышленности.

Закрытые

Оснащается уплотнителями, закрывающими открытое пространство. Это позволяет увеличить износостойкость в сложных условиях.

Фланцевые подшипники

Встроенный фланец повышает надежность крепления, чтобы деталь выдерживала большие нагрузки.

Опорные

Воспринимают тяжесть вдоль оси вращения. Сфера применения сильно ограничена, поэтому встречается реже, чем другие варианты.

Устройства линейного перемещения

Обладают высокими рабочими качествами при минимальном трении.

Радиальные подшипники

Основные виды радиальных подшипников качения приведены в табл. 36.

Однорядные радиальные шариковые подшипники (табл. 36, экс. 1, 2) предназначены для восприятия преимущественно радиальных нагрузок, но могут одновременно нести значительные осевые нагрузки.

В подшипниках этого типа шарики катятся в беговых канавках, профилированных дугами окружностей радиусом, равным ~1,03 радиуса шарика. Шарики заключают в штампованные из листовой стали или массивные сепараторы, предупреждающие трение между шариками и обеспечивающие равномерное расстояние между ними Подшипники по эскизу 1 собирают путем смещения внутренней обоймы относительно наружной и введения шариков в образовавшийся серповидный зазор. В конструкции 2 для введения шариков предусмотрены осевые канавки, что позволяет несколько увеличить число шариков. Подшипники этого типа обладают повышенной радиальной несущей способностью. Применять их для восприятия осевой нагрузки, направленной в сторону канавок, не рекомендуется.

Осевая жесткость шариковых подшипников невелика. Осевое перемещение внутренней обоймы относительно наружной под высокой нагрузкой достигает нескольких десятых миллиметра. Жесткость парных установок можно повысить предварительным натягом подшипников.

Однорядные шариковые подшипники благодаря точечному контакту обладают наименьшим среди всех подшипников коэффициентом трения и наиболее приспособлены для высоких частот вращения.

Двухрядные радиальные шариковые подшипники (3, 4) отличаются повышенной несущей способностью, но более чувствительны к перекосам.

Двухрядные шариковые сферические подшипники (5, 6), обладающие самоустанавливаемостью, применяют в установках, где возможны упругие деформации вала или смещение оси одного подшипника относительно оси другого.

Снижение радиальной несущей способности вследствие неблагоприятной для контактной прочности формы беговой дорожки наружной обоймы компенсируется наличием двух рядов шариков. Форма беговой дорожки у сферических подшипников не позволяет нести значительные осевые нагрузки. Осевая жесткость их невелика.

Шариковые радиально-упорные подшипники (7, 8) предназначены для восприятия одновременно радиальных и осевых сил.

Форма беговой дорожки наружной обоймы позволяет увеличить число шариков, что повышает несущую способность подшипника. Разъемные радиально-упорные подшипники (7) допускают беспрепятственное снятие наружной обоймы; в неразъемных (8) подшипниках наружная обойма зафиксирована на шариках неглубокой закраиной беговой дорожки. Последняя конструкция удобнее для монтажа подшипника в узле.

У подшипников, предназначенных для небольших осевых нагрузок, угол контакта β = 12°; у подшипников для высоких осевых нагрузок β = 26—40°.

Одиночную установку радиально-упорных подшипников применяют только при постоянной по направлению осевой нагрузке (например, на вертикальных валах). В большинстве случаев применяют парную установку, замыкаемую затяжкой обойм (наружных или внутренних).

Сдвоенные радиально-упорные подшипники (9, 10) выпускают с заранее установленным зазором (а), выбираемым при затяжке.

Радиально упорные подшипники в парной установке с натягом обеспечивают практически беззазорное центрирование и осевую фиксацию вала.

Применяемые иногда неразъемные радиально-упорные подшипники двустороннего действия (11, 12) лишены этого преимущества.

Радиальные роликовые подшипники (13—15) предназначены для несения высоких радиальных нагрузок при отсутствии осевых. Повышенная несущая способность роликовых подшипников (в 1,5—2 раза большая, чем одинаковых по размерам шариковых подшипников) обусловлена линейным контактом между роликами и беговыми дорожками, а также увеличенным числом роликов (которые в обоймы устанавливаются без затруднений).

Одну из обойм подшипника, обычно внутреннюю (13), реже наружную (14), выполняют с буртиками, направляющими ролики при их движении по беговым дорожкам. Вторую обойму делают гладкой.

Подшипники этого типа допускают известную свободу осевого перемещения одной обоймы относительно другой; их часто применяют в качестве плавающих опор.

При установке обе обоймы должны быть зафиксированы в осевом направлении.

Подшипники с буртиками на обеих обоймах (15) могут нести небольшие осевые нагрузки; их используют для фиксации валов.

Выпускают подшипники с отъемными буртиками (16, 17). Конструкцию по эск. 18 сейчас не применяют из-за больших осевых размеров.

Роликовые подшипники с длинными роликами (19) отличаются повышенной несущей способностью и меньшими радиальными размерами. Направление роликов при движении по беговым дорожкам хуже, чем в подшипниках с короткими роликами, поэтому иногда применяют многорядную установку коротких роликов в общем сепараторе (20) или пользуются двухрядными роликовыми подшипниками (21).

Подшипники с витыми цилиндрическими роликами (22) отличаются несколько повышенной упругостью в радиальном направлении. Несущая способность их значительно меньше, чем у подшипников с массивными роликами.

Для установки на коленчатых валах подшипники этого типа изготовляют с разъемными в меридиональной плоскости внутренними обоймами, соединенными в ласточкин хвост. Широкого применения эти подшипники не получили.

Игольчатые подшипники с роликами малого диаметра и большой длины (23, 24) применяют при стесненных радиальных размерах для несения повышенных радиальных нагрузок при малых частотах вращения.

Цилиндросферические подшипники (25), у которых торцы роликов выполнены по сфере, могут наряду с радиальными нагрузками воспринимать довольно значительные осевые нагрузки. Условие чистого качения на торцах роликов в этих подшипниках не соблюдается.

Двухрядные роликовые самоустанавливающиеся подшипники с бочкообразными роликами (26) выгодно отличаются от сферических шариковых подшипников повышенной радиальной и осевой несущей способностью. Условие чистого качения в этих подшипниках соблюдается не полностью.

Конические роликовые подшипники (27, 28) применяют для восприятия высоких радиальных и осевых нагрузок.

Угол конуса наружной беговой дорожки в стандартных подшипниках α = 20—30°. Осевая жесткость их невелика; приложение осевой силы Рос вызывает высокие нагрузки на ролики (N = Рос/sin α/2), вследствие чего частота вращения этих подшипников ограничена; они чувствительны к перетяжке. В подшипниках, предназначенных для несения повышенных осевых нагрузок, угол α увеличивают до 60°. В одиночной установке конические роликовые подшипники применяют только как упорные (преимущественно на вертикальных валах); обычно их устанавливают парно. Замыкание осуществляется установкой обоих подшипников зеркально один по отношению к другому, с затяжкой парных (наружных или внутренних) обойм, обеспечивающей беззазорное центрирование и осевую фиксацию вала.

Промышленность выпускает сдвоенные (29, 30) и многорядные (31) крупногабаритные конические роликовые подшипники, предназначенные для несения особо высоких нагрузок.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]