Роль передаточного числа в современных редукторах

Если этот параметр Вам не известен, то можно рассчитать его по формуле:

М2 = 9550 х Р1 х і х КПД / 100 х n1

Где: P1(кВт) входная мощность редуктора; i — передаточное отношение; КПД (%) — коэффициент полезного действия; n1(об/мин) — обороты на входном валу (вал электродвигателя).

  • КПД=98% (для одноступенчатых редукторов)
  • КПД=97% (для двухступенчатых редукторов)
  • КПД=96% (для трехступенчатых редукторов)
  • КПД=95% (для четырехступенчатых редукторов, а так же для червячных одноступенчатых редукторов)
  • КПД=94% (для редукторов с количеством ступеней 5 и более, а так же для червячных двухступенчатых редукторов).

Определить необходимую мощность Р1 (кВт) для редуктора (входная мощность редуктора)

Если этот параметр Вам не известен, то можно рассчитать его по формуле:

Р1= М2 х n1 х 100 / 9550 х КПД

Где: M2(Нм) крутящий момент редуктора; n1(об/мин) — обороты на входном валу (вал электродвигателя); КПД (%) — коэффициентполезного действия.

  • КПД=98% (для одноступенчатых редукторов)
  • КПД=97% (для двухступенчатых редукторов)
  • КПД=96% (для трехступенчатых редукторов)
  • КПД=95% (для четырехступенчатых редукторов, а так же для червячных одноступенчатых редукторов)
  • КПД=94% (для редукторов с количеством ступеней 5 и более, а так же для червячных двухступенчатых редукторов).

Определить номинальную мощность Рe (кВт) для редуктора (номинальная мощность редуктора)

Если этот параметр Вам не известен, то можно рассчитать его по формуле:

Где: P1 (кВт) — входная мощность редуктора; Sf — коэффициент эксплуатации (коэффициент надежности).

Определить необходимые обороты n2 (об/мин) для вашего оборудования или передаточное отношение i редуктора (обороты на выходном валу редуктора).

Если этот параметр Вам не известен, то можно рассчитать его по формуле:

n1(об/мин) — обороты на входном валу (вал электродвигателя); n1(об/мин) — обороты на выходном валу (вал редуктора).

Рассчитать необходимую радиальную нагрузку Fq (Н) на выходной вал редуктора (в зависимости от вида соединения редуктора с оборудованием).

Радиальную нагрузку на вал редуктора можно рассчитать его по формуле:

  • Fq = 2100 х М2 / D зубчатая передача (рабочий угол – 20 градусов)
  • Fq = 2100 х М2 / D цепная передача (на малых оборотах z > 17)
  • Fq = 2500 х М2 / D зубчатая ременная передача
  • Fq = 5000 х М2 / D клиноременная передача
  • Fq = 5000 х М2 / D ременная передача через ролик натяжителя

Где: Fq(Н) — радиальная нагрузка на вал редуктора; М2(Нм) — крутящий момент редуктора; D (мм) — диаметр шестерни или шкива; при выборе редуктора необходимо учитывать, что:

Любое подвижное соединение, передающее усилие и меняющее направление движения, имеет свои технические характеристики. Основным критерием, определяющим изменение угловой скорости и направления движения, является передаточное число. С ним неразрывно связано изменение силы – передаточное отношение. Оно вычисляется для каждой передачи: ременной, цепной, зубчатой при проектировании механизмов и машин.

Перед тем как узнать передаточное число, надо посчитать количество зубьев на шестернях. Затем разделить их количество на ведомом колесе на аналогичный показатель ведущей шестерни. Число больше 1 означает повышающую передачу, увеличивающую количество оборотов, скорость. Если меньше 1, то передача понижающая, увеличивающая мощность, силу воздействия.

Общее определение

Наглядный пример изменения числа оборотов проще всего наблюдать на простом велосипеде. Человек медленно крутит педали. Колесо вращается значительно быстрее. Изменение количества оборотов происходит за счет 2 звездочек, соединенных в цепь. Когда большая, вращающаяся вместе с педалями, делает один оборот, маленькая, стоящая на задней ступице, прокручивается несколько раз.

Передачи с крутящим моментом

В механизмах используют несколько видов передач, изменяющих крутящий момент. Они имеют свои особенности, положительные качества и недостатки. Наиболее распространенные передачи:

Ременная передача самая простая в исполнении. Используется при создании самодельных станков, в станочном оборудовании для изменения скорости вращения рабочего узла, в автомобилях.

Ремень натягивается между 2 шкивами и передает вращение от ведущего в ведомому. Производительность низкая, поскольку ремень скользит по гладкой поверхности. Благодаря этому, ременной узел является самым безопасным способом передавать вращение. При перегрузке происходит проскальзывание ремня, и остановка ведомого вала.

Передаваемое количество оборотов зависит от диаметра шкивов и коэффициента сцепления. Направление вращения не меняется.

Переходной конструкцией является ременная зубчатая передача.

На ремне имеются выступы, на шестерне зубчики. Такой тип ремня расположен под капотом автомобиля и связывает звездочки на осях коленвала и карбюратора. При перегрузе ремень рвется, так как это самая дешевая деталь узла.

Цепная состоит из звездочек и цепи с роликами. Передающееся число оборотов, усилие и направление вращения не меняются. Цепные передачи широко применяются в транспортных механизмах, на конвейерах.

Характеристика зубчатой передачи

В зубчатой передаче ведущая и ведомая детали взаимодействуют непосредственно, за счет зацепления зубьев. Основное правило работы такого узла – модули должны быть одинаковыми. В противном случае механизм заклинит. Отсюда следует, что диаметры увеличиваются в прямой зависимости от количества зубьев. Одни значения можно в расчетах заменить другими.

Модуль – размер между одинаковыми точками двух соседних зубьев.

Например, между осями или точками на эвольвенте по средней линии Размер модуля состоит из ширины зуба и промежутка между ними. Измерять модуль лучше в точке пересечения линии основания и оси зубца. Чем меньше радиус, тем сильнее искажается промежуток между зубьями по наружному диаметру, он увеличивается к вершине от номинального размера. Идеальные формы эвольвенты практически могут быть только на рейке. Теоретически на колесе с максимально бесконечным радиусом.

Деталь с меньшим количеством зубьев называют шестерней. Обычно она ведущая, передает крутящий момент от двигателя.

Зубчатое колесо имеет больший диаметр и в паре ведомое. Оно соединено с рабочим узлом. Например, передает вращение с необходимой скоростью на колеса автомобиля, шпиндель станка.

Обычно посредством зубчатой передачи уменьшается количество оборотов и увеличивается мощность. Если в паре деталь, имеющая больший диаметр, ведущая, на выходе шестерня имеет большее количество оборотов, вращается быстрее, но мощность механизма падает. Такие передачи называют понижающими.

Расчет элементов корпуса редуктора

Толщина стенки корпуса редуктора
= 0,025+ 1=5 мм

Полученное значение округляем до целого числа с учетом того, что толщина стенки должна быть не меньшего 8 мм. Примем

= 8

Диаметр фундаментного болта

d

б1 = 0,036
+ 12 =17,76 мм
округлим расчетное значение до стандартного диаметра резьбы:

Диаметры болтов крепления крышки корпуса к основанию равны:

После округления до стандартных значений: d

б2 = 16 мм,
d
б3 =12 мм

Расстояние от внутренней стенки корпуса до края лапы

L

1= 3 +
+b
1 =51 мм

где b

1 = 40 мм, определяется по табл. 5 в зависимости от диаметра болта
d
б1.

Расстояние от внутренней стенки корпуса до оси фундаментного болта

P

1 = 3 +
+a
1 = 28 мм

где a

1 = 17 мм, определяется по табл. 5 в зависимости от диаметра болта
d
б1.

Расстояние от внутренней стенки корпуса до оси болта у подшипника

P

2= 3 +
+a
2= 24 мм

где a

2 = 13 мм, определяется по табл. 5 в зависимости от диаметра болта
d
б2.

Расстояние от внутренней стенки корпуса до оси фундаментного болта

P

3= 3 +
+a
3= 21 мм

где a

3 = 9 мм, определяется по табл. 5 в зависимости от диаметра болта
d
б3.

h=

2.5
=20 мм
h

1
=
1.6
= 14 мм
Минимальное расстояние от окружности вершин зубчатого колеса до стенки корпуса редуктора

f

= 1.2
=10 мм
C

=
= 8
Для уменьшения потерь мощности на трение и снижения интенсивности износа трущих­ся поверхностей, а также для предохранения их от заедания, коррозии и лучшего от­вода теплоты трущиеся поверхности деталей должны иметь надежную смазку.

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Расчётный способ

А можно ли узнать передаточное число неизвестного автомобиля, не разбирая редуктор? Оказывается, есть такой способ. Для этого ось, на которой установлен редуктор, вывешивается на опорах. Запоминается положение ведущего вала и колес. Это удобно сделать простыми метками. Затем колеса крутят до тех пор, пока метки снова не совпадут, подсчитывая число оборотов колес и вала отдельно. Удобнее эту процедуру проводить с помощником.

После получения экспериментальных данных следует рассчитать число путем деления количества оборотов вала на количество оборотов колес. Точность такого способа примерная и повышается только внимательностью при подсчете и совмещении меток.

Передаточное отношение зубчатой передачи

Значение передаточного числа зубчатой передачи совпадает передаточным отношением. Величина угловой скорости и момента силы изменяется пропорционально диаметру, и соответственно количеству зубьев, но имеет обратное значение.

Чем больше количество зубьев, тем меньше угловая скорость и сила воздействия – мощность.

При схематическом изображении величины силы и перемещения шестерню и колесо можно представить в виде рычага с опорой в точке контакта зубьев и сторонами, равными диаметрам сопрягаемых деталей. При смещении на 1 зубец их крайние точки проходят одинаковое расстояние. Но угол поворота и крутящий момент на каждой детали разный.

Например, шестерня с 10 зубьями проворачивается на 36°. Одновременно с ней деталь с 30 зубцами смещается на 12°. Угловая скорость детали с меньшим диаметром значительно больше, в 3 раза. Одновременно и путь, который проходит точка на наружном диаметре имеет обратно пропорциональное отношение. На шестерне перемещение наружного диаметра меньше. Момент силы увеличивается обратно пропорционально соотношению перемещения.

Крутящий момент увеличивается вместе с радиусом детали. Он прямо пропорционален размеру плеча воздействия – длине воображаемого рычага.

Передаточное отношение показывает, насколько изменился момент силы при передаче его через зубчатое зацепление. Цифровое значение совпадает с переданным числом оборотов.

Передаточное отношение редуктора вычисляется по формуле:

где U12 – передаточное отношение шестерни относительно колеса;

ω1 и ω2 – угловые скорости ведущего и ведомого элемента соединения;

Отношение угловых скоростей можно считать через число зубьев. При этом направление вращения не учитывается и все цифры с положительным знаком.

Зубчатая передача имеет самый высокий КПД и наименьшую защиту от перегруза – ломается элемент приложения силы, приходится делать новую дорогостоящую деталь со сложной технологией изготовления.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Покупка моторного редуктора – инвестиции в технико-технологические бизнес-процессы, которые должны быть не только обоснованными, но и окупаемыми. А окупаемость во многом зависит от выбора мотор-редуктора для конкретных целей. Осуществляется он на основе профессионального расчета мощности, размерности, производительной эффективности, требуемого уровня нагрузки для конкретных целей использования.

Во избежание ошибок, которые могут привести к раннему износу оборудования и дорогостоящим финансовым потерям, расчет мотор-редуктора должны производить квалифицированные специалисты. При необходимости его и другие исследования для выбора редуктора могут провести эксперты .

Проверяем расчеты

Если все произведенные расчеты оказались верны, а подсчитанные нами значения сходятся, то должны выполняться три условия. Во-первых,

где Тном – номинальный крутящий момент, получаемый на выходном валу. Данное значение можно найти в техническом описании редуктора.

В данной формуле Fном по аналогии берется из технической спецификации изделия, а Fвых.расч – из полученных нами значений (формула 6).

Р вх.расч – это мощность электродвигателя, которая рассчитывается по формуле:

КПД редуктора зависит от его типа и количества ступеней. Таким образом, для редуктора цилиндрического типа с одной ступенью КПД будет равен 0,99, с двумя – 0,98, с тремя – 0,97, с четырьмя – 0,95. Одноступенчатый конический редуктор обладает КПД, равным 0,98, двухступенчатый – 0,97. Коэффициент полезного действия коническо-цилиндрического редуктора определяется умножением значений, приведенных для конического и цилиндрического редуктора по отдельности. КПД червячных редукторов можно посмотреть в техническом описании, при этом для каждого передаточного числа будет свое определенное значение.

Источник

Выбор по основным характеристикам

Длительный срок службы при обеспечении заданного уровня работы оборудования, с которым работает мотор-редуктор, – ключевая выгода при правильном выборе привода. Наша многолетняя практика показывает, что при определении требований исходить стоит из следующих параметров:

  • минимум 7 лет безремонтной работы для червячного механизма;
  • от 10–15 лет для цилиндрического привода.

В ходе определения данных для подачи заказа на производство мотор-редуктора ключевыми характеристиками являются:

  • мощность подключенного электродвигателя,
  • скорость вращения подвижных элементов системы,
  • тип питания мотора,
  • условия эксплуатации редуктора – режим работы и загрузки.

При расчете мощности электродвигателя для мотор-редуктора за основу берут производительность техники, с которой он будет работать. Производительность редукторного мотора во многом зависит от выходного момента силы и скоростью его работы. Скорость, как и КПД, может меняться при колебаниях напряжения в системе питания двигателя.

Скорость моторного редуктора – это зависимая величина, на которую влияют две характеристики:

  • передаточное число;
  • частота вращательных движений мотора.

В нашем каталоге есть редукторы с разными скоростными параметрами. Имеются модели с одним или несколькими скоростными режимами. Второй вариант предусматривает наличие системы регулирования скоростных параметров и применяется в случаях, когда во время эксплуатации редуктора необходима периодическая смена скоростных режимов.

Где купить червячный редуктор

Если вы планируете купить червячный редуктор на долгосрочную перспективу по обоснованной цене, нам есть что вам предложить. ПТЦ «Привод» много лет занимается поставками данной техники по всей России и в страны СНГ.

Мы предлагаем только высоконадежные качественные агрегаты по эффективной цене производителя с гарантиями долгосрочной службы. Осуществляем полное сопровождение заказа – от помощи в построении системы требований до выбора червячного редуктора, соответствующего заявленным условиям работы.

Выбор по типу редуктора для привода

Профессиональный расчет с целью выбора редуктора всегда начинается с проработки схемы привода (кинематической). Именно она лежит в основе соответствия выбранного оборудования условиях будущей эксплуатации. Согласно данной схеме, вы можете выбрать класс мотор-редуктора. Варианты следующие.

  • Червячный механизм:
  • одноступенчатая передача, входной вал под прямым углом к выходному валу (скрещенное положение входного вала и выходного вала);
  • двухступенчатый механизм с расположением входного вала параллельно или перпендикулярно выходному валу (оси могут располагаться вертикально/горизонтально).
  • Цилиндрический мотор-редуктор:
  • с параллельным положением входного вала и выходного вала и горизонтальным размещением осей (выходной вал с органом на входе находятся в одной плоскости);
  • с размещением осей входного вала и выходного в одной плоскости, но соосно (расположены под любым углом).
  • Конически-цилиндрический. В нем ось входного вала пересекается с осью выходного вала под углом 90 градусов.
  • Ключевое значение при выборе мотор-редуктора имеет положение выходного вала. При комплексном подходе к подбору устройства следует учитывать следующее:

  • Цилиндрический и конический моторный редуктор, имея аналогичные червячному приводу вес и размеры, демонстрирует более высокий КПД.
  • Передаваемая цилиндрическим редуктором нагрузка в 1,5–2 раза выше, чем у червячного аналога.
  • Использование конической и цилиндрической передачи возможно только при размещении по горизонтали.

Выбор оборудования

Это надо понимать: даже в устройствах идентичной конфигурации/конструкции соотношение скорости вращения входного вала и выходного вала может отличаться. Для верного выбора важно знать, как посчитать передаточное число редукторного двигателя. Хотя существует и другой путь — уточнить данные непосредственно у производителя.

Инженеры производственного знают все о характеристиках редукторного оборудования и рады помочь заказчику подобрать механизм, который оптимально отвечает запросам производственной площадки. Профессиональный расчет и всесторонняя информационная поддержка предоставляются бесплатно. Специалисты расскажут, как определить передаточное число редуктора и оформить заказ. А также помогут просчитать стоимость и сориентируют по срокам его доставки.

Классификация по числу ступеней и типу передачи

Тип редуктораЧисло ступенейТип передачиРасположение осей
Цилиндрический1Одна или несколько цилиндрическихПараллельное
2Параллельное/соосное
3
4Параллельное
Конический1КоническаяПересекающееся
Коническо-цилиндрический2Коническая Цилиндрическая (одна или несколько)Пересекающееся/ Скрещивающееся
3
4
Червячный1Червячная(одна или две)Скрещивающееся
2Параллельное
Цилиндро-червячный или червячно- цилиндрический2Цилиндрическая (одна или две) Червячная (одна)Скрещивающееся
3
Планетарный1Два центральных зубчатых колеса и сателлиты (для каждой ступени)Соосное
2
3
Цилиндрическо-планетарный2Цилиндрическая (одна или несколько) Планетарная (одна или несколько)Параллельное/соосное
3
4
Коническо-планетарный2Коническая (одна) Планетарная (одна или несколько)Пересекающееся
3
4
Червячно-планетарный2Червячная (одна) Планетарная (одна или несколько)Скрещивающееся
3
4
Волновой1Волновая (одна)Соосное

Передаточное число

Определение передаточного отношения выполняют по формуле вида:

  • nвх– обороты входного вала (характеристика электродвигателя) в минуту;
  • nвых– требуемое число оборотов выходного вала в минуту.

Полученное частное округляется до передаточного числа из типового ряда для конкретных типов мотор-редукторов. Ключевое условие удачного выбора электродвигателя – ограничение по частоте вращения входного вала. Для всех типов приводных механизмов она не должна превышать 1,5 тыс. оборотов в минуту. Конкретный критерий частоты указывается в технических характеристиках двигателя.

Порядок выбора червячного редуктора

Среди достоинств данного агрегата – обоснованная цена червячного редуктора. Но даже с ее учетом подбор должен быть очень выверенным. Чтобы купить оборудование, которое оптимально впишется в используемую программу технического оснащения, необходимо разобраться с базовыми параметрами выбора червячного редуктора. В данной системе расчетов параметров для определения цены присутствуют такие характеристики, как:

  • передаточное отношение;
  • КПД;
  • количество ступеней;
  • планируемое время запуска;
  • габаритные размеры конструкции.

Определение передаточного числа

Начинается выбор червячного редуктора с расчета передаточного отношения – соотношения зубьев ведомой шестерни с количеством зубьев ведущего червяка. От этого зависит кратность увеличения крутящего момента при движении червяка.

Для расчета передаточного числа (требуемого) с целью правильного выбора червячного редуктора используется формула вида:

  • N вх. – это обороты входного вала электромотора де-факто (по паспорту, количество в минуту);
  • N вых. – требуемое число оборотов тихоходного выходного вала за минуту.

Результаты нужно округлить. После чего можно купить модель, руководствуясь таблицей передаточных чисел для разных вариаций механизмов.

Расчет количества ступеней

Расчет передаточного числа является ключевым и при определении требуемого числа ступеней. Во исполнение последней задачи необходимо подобрать систему, согласно полученному соотношению, из таблицы, приведенной ниже.

Выбор червячного редуктораПередаточные числа
одноступенчатый8–80
двухступенчатый100–4000

Выбор червячного редуктора по габаритам

Грамотный выбор червячного редуктора по габаритным параметрам требует приведение в соответствие параметров мощности, оборотов двигателя с типом приводного механизма. Чтобы определиться, какой типоразмер нужно купить именно вам, используйте формулу:

  • Р – производительность используемого электромотора, принимается в кВт;
  • U – расчетный показатель передаточного числа;
  • N – КПД, согласно техническим характеристикам и результатам вычислений;
  • К – коэффициент использования/эксплуатации, принимается в зависимости от условий работы червячного редуктора, согласно таблице (она представлена ниже);
  • N вх. – паспортное количество оборотов двигателя.
Режим использования (согласно ГОСТу 21354-87, а также нормам ГосТехНадзора)ПВ (%)K
Непрерывный1000,7
IТяжелый>630,8
IIСреднийПродолжительность эксплуатации
Расчет времени включения осуществляется так:
  • T – это период эксплуатации, взятый в минутах за час работы по среднему показателю.
  • Результат определяют в процентах.

Важное условие: полученный момент не должен превышать номинального крутящего момента. Последний указан в паспорте (технические характеристики червячного редуктора). Это необходимо для продолжительной работы валов механизма (во избежание разницы между нагрузками, прикладываемыми де-факто, и предусмотренными в паспорте).

Диапазон передаточных чисел для редукторов

Тип редуктораПередаточные числа
Червячный одноступенчатый8-80
Червячный двухступенчатый25-10000
Цилиндрический одноступенчатый2-6,3
Цилиндрический двухступенчатый8-50
Цилиндрический трехступенчатый31,5-200
Конческо-цилиндрический одноступенчатый6,3-28
Конческо-цилиндрический двухступенчатый28-100

Мощности

При вращательных движениях рабочих органов механизмов возникает сопротивление, которое приводит к трению – истиранию узлов. При грамотном выборе редуктора по показателю мощности он способен преодолевать это сопротивление. Потому этот момент имеет большое значение, когда нужно купить мотор-редуктор с долгосрочными целями.

Сама мощность – Р – считается как частное от силы и скорости редуктора. Формула выглядит так:

  • где: M – момент силы;
  • N – обороты в минуту.

Для выбора нужного мотор-редуктора необходимо сопоставить данные по мощности на входе и выходе – Р1 и Р2 соответственно. Расчет мощности мотор-редуктора на выходе рассчитывается так:

  • где: P – мощность редуктора; Sf – эксплуатационный коэффициент, он же сервис-фактор.

На выходе мощность редуктора (P1 > P2) должна быть ниже, чем на входе. Норма данного неравенства объясняется неизбежными потерями производительности при зацеплении в результате трения деталей между собой.

При расчете мощностей обязательно применять точные данные: из-за разных показателей КПД вероятность ошибки выбора при использовании приблизительных данных близится к 80%.

Крутящий момент редуктора

Крутящий момент на выходном валу [M2] — вращающий момент на выходном валу. Учитывается номинальная мощность [Pn], коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.

Номинальный крутящий момент [Mn2] — максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности — 1 и продолжительность эксплуатации — 10 тысяч часов.

Максимальный вращающий момент [M2max] — предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.

Необходимый крутящий момент [Mr2] — крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.

Расчетный крутящий момент [Mc2] — значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:

Mc2 = Mr2 x Sf <= Mn2

где Mr2 — необходимый крутящий момент; Sf — сервис-фактор (эксплуатационный коэффициент); Mn2 — номинальный крутящий момент.

Расчет КПД

КПД мотор-редуктора является частным деления мощности на выходе и на входе. Рассчитывается в процентах, формула имеет вид:

При определении КПД следует опираться на следующие моменты:

  • величина КПД прямо зависит от передаточного числа: чем оно выше, тем выше КПД;
  • в ходе эксплуатации редуктора его КПД может снизиться – на него влияет как характер или условия эксплуатации, так и качество используемой смазки, соблюдение графика плановых ремонтов, своевременное обслуживание и т. д.

Расчет редуктора

Надежность редуктора и его срок службы определяется тем, насколько верный выбор Вы сделали при покупке оборудования. Поломка редуктора, его неправильное функционирование и, как следствие, дополнительные финансовые затраты – всё это может указывать на различные ошибки, которые были допущены при расчете редуктора. Кроме того, у верно подобранного редуктора срок службы значительно выше: для редукторов цилиндрического типа он составляет 10-15 лет, а для червячных – 7-9 лет. Следовательно, наиболее рациональное решение при выборе подобного оборудования – доверить расчет редуктора высококвалифицированным специалистам, которые не забудут учесть такие факторы, как степень допустимого нагрева или температурные условия эксплуатации редуктора. Наши сотрудники с удовольствием помогут Вам сделать правильный выбор и подобрать подходящий под конкретные цели редуктор. Для этого Вы можете воспользоваться функцией онлайн-консультации, заказать бесплатный звонок или оставить заявку на почте Получите профессиональную консультацию от наших специалистов тем способом, которым Вам удобно!

Можно выделить три основных шага при расчете редуктора. Необходимо:

Показатели надежности

В таблице ниже приведены нормы ресурса основных деталей мотор-редуктора при длительной работе устройства с постоянной активностью.

Ресурс

ПоказательТип редуктораЗначение, ч
90% ресурса валов и передачЦилиндрический, планетарный, конический, коническо-цилиндрический25000
90% ресурса подшибниковЧервячный, волновой, глобоидный10000
Цилиндрический, планетарный, конический, коническо-цилиндрический12500
Червячный5000
Глобоидный,волновой10000

Определение уровня масла.

В цилиндрических редукторах:

При окунании в масляную ванну колеса m≤ hм≤0.25d2, где m – модуль зацепления; при нижнем расположении шестерни hм=(0,1….0,5)d1, при этом hmin=2,2m. Желательно, чтобы уровень масла проходил через центр нижнего тела качения подшипника (шарика или ролика).

При нижнем расположении шестерни цилиндрической передачи и высокой частоте вращения для уменьшения тепловыделения и потери мощности, уровень масла понижают так, чтобы вывести шестерню из масляной ванны. В этом случае, для смазывания, на шестерню устанавливают разбрыгиватели.

Купить мотор-редуктор

ПТЦ «Привод» – производитель редукторов и мотор-редукторов с разными характеристиками и КПД, которому не безразличны показатели окупаемости его оборудования. Мы постоянно работаем не только над повышением качества нашей продукции, но и над созданием самых комфортных условий ее приобретения для вас.

Специально для минимизации ошибок выбора нашим клиентам предлагается интеллектуальный конфигуратор. Чтобы воспользоваться этим сервисом, не нужны специальные навыки или знания. Инструмент работает в режиме онлайн и поможет вам определиться с оптимальным типом оборудования. Мы же предложим лучшую цену мотор-редуктора любого типа и полное сопровождение его доставки.

Типы взрывозащищенного исполнения

Выделяют 3 основные категории редукторов и мотор-редукторов по классу взрывозащищенности:

  • Е – устройства с повышенной степенью защищенности. Пригодны для эксплуатации в любых условиях, в том числе при возникновении внештатных ситуаций. Благодаря высокой герметичности корпуса подходят для использования в средах взрывоопасных и горючих газов и газо-воздушных смесей без риска воспламенения последних;
  • D – мотор-редукторы со взрывонепроницаемым корпусом, неразрушимым в случае взрыва самого агрегата. Отличаются полной герметичностью оболочки и безопасностью, которая позволяет использовать их в средах любых взрывоопасных газов и смесей, а также при предельно высоких эксплуатационных температурах;
  • I – устройства с увеличенной искробезопасностью. Подразумевают поддержку взрывобезопасного тока в питающей цепи в соответствии с конкретными производственными условиями.
Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]