Вакуумная термообработка магнитных материалов и оборудование


Состав пермаллоя

В зависимости от марки пермаллой имеет в составе различное соотношение никеля и железа. Стандартный состав:

  • никель — 81%
  • железо — 19%

Иногда легируют другими металлами для получения необходимых свойств. Металл был изобретен более века назад и первоначально использовался для экранирования кабеля, протянутого на большие расстояния. В нашу страну он был завезен значительно позже и быстро получил популярность для производства электронного оборудования.

Состав металла строго нормируется и не допускает отклонений. Любые неточности приводят к изменению характеристик, что недопустимо для современного производства. Подробнее о различных видах пермаллоев можно узнать в ГОСТ 10994-74.

В зависимости от состава пермаллои делятся на:

  • высоконикилиевые, содержащие около 80% никеля. Наиболее распространенным продуктом этой группы является сплав 79НМ.
  • Низконикелевые, по большей части состоящие из железа. Такой металл имеет меньший показатель магнитной проницаемости, но обладает прекрасным удельным сопротивлением. Чаще всего применяют сплав 50НХС.

Чаще всего в качестве добавок используются следующие вещества: Г – марганец; C – кремний; X – хром; Н – никель; Д – медь; A – азот; Ф – ванадий; В – вольфрам; E – селен; К – кобальт; Л — бериллий; М – молибден; P – бор; T – титан; Ю – алюминий; Ц – цирконий; П – фосфор; Ч – прочие элементы.

Полимерные материалы

В тех устройствах, где наряду с экранированием магнитного поля требуется защита от механических повреждений и амортизация, применяются полимерные материалы. Они изготавливаются в виде прокладок из полиуретановой пены, покрытой полиэфирной пленкой, на основе акрилового адгезива.

При производстве жидкокристаллических мониторов используются акриловые уплотнители из токопроводящей ткани. В слое акрилового адгезива находится трехмерная электропроводная матрица, выполненная из токопроводящих частиц. Благодаря своей упругости такой материал также эффективно поглощает механические воздействия.

Характеристики

Содержание никеля в составе делает его стойким к коррозии и воздействию агрессивных химических веществ. Благодаря этому продукция, изготовленная из железоникелевых сплавов, может применяться в любых условиях.

Кроме того, материал прекрасно поддается обработке всеми известными способами без применения сложного и дорогостоящего оборудования. Простую обработку можно выполнить даже ручным инструментом. Благодаря чему, пермаллой может использоваться в качестве сырья для производства любых деталей.

Сплав обладает высокой прочностью и пластичностью. Однако основными качествами данного металла являются высокие показатели удельного сопротивления и магнитной проницаемости.

Для получения различных свойств в сплав добавляют молибден, медь, кремний и прочие металлы. Так, например, для придания термостабильности осуществляют легирование медью.

Маркируются циферно-буквенным обозначением, где первое число означает процентное содержание никеля, затем идет буква «Н» и обозначения дополнительных компонентов содержащихся в пермаллое. К примеру, обозначение 79HM, расшифровывается как пермаллой с 79 % содержанием никеля, легированный молибденом.

Эксплуатационные характеристики пермаллоя зависят не только от его состава, но и от метода обработки. Чаще всего применяют закаленный состав, превосходящий обычный по магнитной проницаемости и электросопротивлению. Стоит отметить, что свойства зависят также от скорости нагрева и охлаждения во время термообработки.

Стеллит

Стеллиты В2К и ВЗК – литые сплавы на основе кобальта ( табл. 6.10) характеризуются высокой износостойкостью и повышенной вязкостью. Выпускаются в виде прутков диаметром 5 – 7 мм и длиной 250 – 300 мм и применяются для упрочнения различных деталей, работающих в условиях интенсивного истирания при высокой температуре. Наносятся эти сплавы электродуговой или газовой сваркой. Кроме указанных, к сплавам на основе никеля относятся нихромы Х15Н60 и Х2Н80, основным свойством которых является жаростойкость; нимоник-90 и нимоник-100, содержащие кобальт, молибден, ниобий и обладающие высокой жаропрочностью. Эти сплавы применяют для упрочнения деталей, длительно работающих в условиях высоких температур, и используют при наплавке седел клапанов двигателей внутреннего сгорания, уплотнительных поверхностей трубопроводной арматуры и других деталей.  

Стеллиты характеризуются высокой твердостью, коррозионной стойкостью и низким коэффициентом трения. Применяются для повышения износостойкости деталей машин, металлургических установок, а также для изготовления деталей паропроводов, работающих под высоким давлением.  

Стеллиты наплавляют с помощью ацетиленокислородного пламени на детали, изготовленные из углеродистой, низколегированной и нержавеющей сталей, а также из чугуна. Детали из марганцовистых сталей наплавляют электродуговым методом, применяя обмазку электродов из растворимого стекла и порошка алюминия.  

Стеллиты применяются в основном для наплавки различных быстроизнашивающихся деталей. Эти сплавы выпускаются в виде прутков диаметром 5 – 7 мм и длиной до 250 – 300 мм. Детали армируют стеллитами при помощи ацетилено-кислородного пламени или электродуговым методом. В последнем случае прутки литого твердого сплава служат электродами.  

Стеллиты – литые сплавы кобальта, хрома, вольфрама, никеля и углерода. Стеллитоподобные ( сормайт № 1 и 2) – хромоникелевые сплавы на железной основе, по свойствам и структуре близкие к стеллитам, но имеющие иной химический состав.  

Стеллиты обладают также высокой антикоррозионностью. Хорошая свариваемость позволяет использовать стеллиты для наплавки на инструменты ( подвергающиеся износу), благодаря чему их стой кость значительно повышается.  

Стеллиты используют только для наиболее ответственной и тяжелонагруженной арматуры. В остальных случаях применяют сплавы на основе никеля и железа. Большинство таких сплавов разработано на базе хромо-никелевой аустенитной стали Г2Х18Н9Т, обладающей высокой коррозионной и эрозионной стойкостью.  

Конструкция простейшей рабочей лопатки.  

Стеллит – сплав на основе кобальта ( 60 – 65 %), содержащий 25 – 28 % хрома и 4 – 5 % вольфрама. Он имеет высокую твердость и очень высокое сопротивление эрозии.  

Стеллиты и их разновидности различного происхождения, например акрит, кардит, келсит, гиганит и перкит, имеют, как и твердые сплавы для режущего инструмента, высокую твердость и хорошие режущие свойства.  

Стеллиты применяются в основном для наплавки различных быстроизнашивающихся деталей. Эти сплавы выпускаются в виде прутков диаметром 5 – 7 мм и длиной до 250 – 300 мм. Армирование деталей стеллитами производится при помощи ацетилено-кислород-ного пламени или электродуговым методом. В последнем случае прутки литого твердого сплава служат электродами.  

Стеллит fn сормайт применяются для наплавки деталей, требующих механической обработки для получения ровной и чистой поверхности. Износоустойчивость деталей, наплавленных литыми сплавами, повышается в несколько раз.  

Стеллит, содержащий в себе W и Со, обладает высокой коррозионной стойкостью, в частности в серной кислоте, высокой красностойкостью ( до 800 С), вследствие чего применяется для наплавки режущего инструмента.  

Стеллиты В2К и ВЗК, отливаемые в прутки, используют для наплавки инструментов и деталей с целью повышения их твердости и износостойкости. Наплавку осуществляют при помощи ацетиле-но-кислородного пламени или электрической дуги, Наплавленный слой имеет твердость HRC6Q – 62 и высокую красностойкость ( до температур 700 – 800 С), а также сравнительно высокую коррозионную устойчивость в ряде сред.  

Стеллиты представляют сплав на основе кобальта с содержанием вольфрама, хрома и углерода.  

Производство пермаллоя

Процесс производства пермаллоя технически сложен, Чаще всего он поставляется в виде ленты малой толщины. Также выпускаются пруты, листы и порошок из пермаллоя. Сам процесс является сложной процедурой, требующей сложного промышленного оборудования и высокой точности изготовления.

Во время производства пермаллой обязательно проходит термическую обработку, в противном случае магнитная проницаемость будет крайне низкой. Во время термического процесса металл нагревается до температуры 1300 ºC, после чего идет постепенное остывание на 400 ºC.

Прокатка выполняется на мощных прокатных станах, где сырье принимает форму готовой продукции. После этого полученная продукция обжигается и проходит испытания и контроль качества. Данный металл используется в современном высокоточном оборудовании, поэтому брак и различные отклонения от государственных стандартов не допустимы.

Материалы

Чаще всего для защиты от магнитного поля применяют экраны из углеродистой стали, так как они обладают высокой технологичностью в отношении сварки, пайки, недороги и характеризуются хорошей коррозионной стойкостью. Кроме них, используются такие материалы, как:

  • техническая алюминиевая фольга;
  • магнитомягкий сплав из железа, алюминия и кремния (альсифер);
  • медь;
  • стекла с токопроводящим покрытием;
  • цинк;
  • трансформаторная сталь;
  • токопроводящие эмали и лаки;
  • латунь;
  • металлизированные ткани.

Конструктивно они могут изготавливаются в виде листов, сеток и фольги. Листовые материалы обеспечивают лучшую защиту, а сетчатые более удобны в сборке – их можно соединять между собой точечной сваркой с шагом 10-15 мм. Для обеспечения антикоррозионной стойкости сетки покрывают лаками.

Применение

Пермаллой является сложным в производстве дорогостоящим металлом. Поэтому его стараются использовать там, где без него нельзя обойтись. Однако не смотря на это, он широко распространен в электротехнике и прочих отраслях промышленности.

Изначально применялся для уменьшения искажений в телекоммуникационных проводах. В настоящее время невозможно себе представить изготовление сердечников трансформаторов и катушек индуктивности без применения пермаллоя. Здесь необходим материал, который способен накапливать энергию в магнитном поле, сложно найти другой металл, который позволит сделать это также эффективно.

Пермаллой способен получать максимальную индукцию даже при слабом магнитном поле. Это позволяет изготавливать из него компоненты датчиков для определения магнитного поля и различных измерительных приборов.

В современных импульсных трансформаторах применяют пермаллой с максимальным удельным сопротивлением. Благодаря этому такие устройства при небольшом размере способны преобразовывать различные характеристики напряжения.

Также пермаллой широко востребован для изготовления звуковой и высокочастотной аппаратуры. В любом усилителе, головках динамиков и звукозаписывающем оборудовании вы найдете данный сплав. Он также является материалом для производства защитных корпусов элементов, чувствительных к магнитному воздействию.

В медицине пермаллой применяют для экранирования комнат для МРТ и прочих магнитных процедур. Также незаменим для мощных электрических микроскопов.

Порошок пермаллоев применяют для покрытия различных поверхностей, чтобы придать им необходимые свойства. Часто его используют для напыления толстого слоя на металлическую основу, что позволяет получить деталь по свойствам схожую с изготовленной из пермаллоев, но стоящую дешевле.

Свойство ферромагнетиков

С точки зрения физики наиболее интересным материалом является ферромагнетик. Существует устройство, представляющее собой кольцо из него. На прибор равномерно в один слой намотан провод, через который протекает электрический ток. В этом торе возникает электрическое поле, совпадающее по величине с вектором МП. В результате сердечник окажется намагниченным.

Если по оси ординат отложить магнитную индукцию тела, а по оси — абсцисс тока, то можно обнаружить следующие особенности:

  • в начальный момент времени график будет возрастать примерно под углом 30 градусов;
  • после достижения определённой величины (1 Тл) произойдёт резкое выравнивание графика относительно B0.

Из этого можно сделать вывод, что ферромагнетик примерно в тысячу раз увеличивает магнитное поле. Выходит, что магнитная проницаемость зависит от намагничивающего поля. Если провести перпендикуляры с точки перехода графика на координатные прямые и нарисовать из неё диагональ к нулевой точке, то тангенс угла к B0 будет равняться проницаемости: μ = tg j. Оказывается, что при больших намагничивающих полях МП перестаёт расти, то есть существует магнитное насыщение.

Если взять феррит и намагнитить его, а поле размагнитить путём уменьшения поля, то линия размагничивания будет другой. При исчезновении внешнего поля ферромагнетик останется намагниченным.

На петеле можно выделить две точки:

  • Bo — остаточная магнитная индукция, возникающая после снятия электрического поля;
  • Bc — коэрцитивная сила, индукция противоположно направленного поля.

Ферромагнетики, которые обладают широким гистерезисом, называются жёсткими. К ним относится закалённая сталь, сплавы альнико и магнико, неодим. Но бывают и ферромагнетики, которые довольно легко перемагнитить. Их петля гистерезиса имеет узкий вид. Используют такие материалы в электродвигателях, трансформаторах. Их называют мягкими. Примеры — отожжённая сталь, пермаллой.

Экранирование кабелей

Защита от магнитного поля необходима при прокладке кабелей. Электрические токи, наводящиеся в них, могут быть вызваны включением бытовой техники в помещении (кондиционеры, люминесцентные светильники, телефоны), а также лифтов в шахтах. Особенно большое влияние эти факторы оказывают на цифровые системы связи, работающие по протоколам с широкой полосой частот. Это связано с малой разницей между мощностью полезного сигнала и помехами в верхней зоне спектра. Кроме этого, электромагнитная энергия, которую излучают кабельные системы, неблагоприятно воздействует на здоровье персонала, работающего в помещении.

Между парами проводов возникают перекрестные наводки, обусловленные присутствием емкостной и индуктивной связи между ними. Электромагнитная энергия кабелей также отражается из-за неоднородностей их волнового сопротивления и ослабляется в виде тепловых потерь. В результате затухания мощность сигнала в конце протяженных линий падает в сотни раз.

В настоящее время в электротехнической промышленности практикуется 3 метода экранирования кабельных трасс:

  • Применение цельнометаллических коробов (из стали или алюминия) или установка металлических вставок в пластиковые. При росте частоты поля экранирующая способность алюминия снижается. Недостатком также является дороговизна коробов. Для длинных кабельных трасс существует проблема обеспечения электрического контакта отдельных элементов и их заземления для обеспечения нулевого потенциала короба.
  • Использование экранированных кабелей. Этот метод обеспечивает максимальную защиту, так как оболочка окружает непосредственно сам кабель.
  • Вакуумное напыление металла на ПВХ-канал. Такой способ малоэффективен на частотах до 200 МГц. «Гашение» магнитного поля меньше в десятки раз по сравнению с укладкой кабеля в металлические короба из-за высокого удельного сопротивления.

Механические свойства

Толщина скин-слоя различных сплавов от частоты электромагнитного поля.

Пермаллой является механически мягким и устойчивым к коррозии материалом.

Применение

Компания ЭлекТрейд-М предлагает услуги в конструировании и производстве магнитных экранирующих компонентов и вакуумных камер с высокой проницаемостью для низких частот и статических магнитных экранов для использования в различных отраслях: авиационно-космическая, военная и радиоэлектронная промышленность, нефтегазовая отрасль, энергетика, высокотехнологичное производство, медицина, микроскопия, квантовые компьютеры, GPS связь, наука, образование и другие области.

Вакуумная камера из магнитно-экранирующего материала Мю-металл (пермаллой)

Свойства:

– механически мягкий и устойчивый к коррозии материал,

– обладает гранецентрированной кубической решеткой и кубической магнитной анизотропией,

– удельное электрическое сопротивление 2×10−5 Ом·см для сплава марки 81Н,

– индукция насыщения до 2 Тл,

– обладает высокой магнитной проницаемостью (максимальная относительная магнитная проницаемость μ ~ 100 000),

– магниторезистивный коэффициент лежит в пределах от 2 до 4 % (2% для полей порядка 3,75 Э или 300 А/м),

– обладает коэрцитивной силой,

– обладает почти нулевой магнитострикцией и значительным магниторезистивным эффектом,

– электрическое сопротивление пермаллоя меняется в пределе 5% в зависимости от силы и направления действующего магнитного поля.

карта сайта

мо пермаллой 79нм 65нт 81нма 50н 50нп лента свойства купить характеристики цена магнитная проницаемость применение в трансформаторах в москве завод изготовитель лом круг состав марка плотность покупка сварка магнитные свойства проницаемость сердечник кольцевые сердечники из пермаллоя для звука листы головка хард кольца проволока пермаллой производители для изготовления сердечника феррозонда пермаллои это сплавы относительная магнитная проницаемость пермаллоя

comments powered by HyperComments

Это интересно: Пассивация металла — принцип, назначение, виды

Разделение веществ

В пятидесятые годы девятнадцатого столетия Фарадей исследовал влияние веществ на МП. В итоге он пришёл к выводу, что все материалы без исключения влияют на поле. Отсюда следует, что любое вещество является источником своего МП, но при условии его помещения во внешнее поле. Это явление было названо намагниченностью.

По результатам своего исследования Фарадей разделил все физические элементы на три класса, дав определение каждому из них:

  1. Диамагнетики. Вещества, у которых проницаемость чуть меньше единицы: μ < 1. К ним относятся все газы, кроме кислорода, золота, серебра, углерода в любой кристаллической модификации, висмута. При помещении этих веществ в МП собственный вектор магнитной индукции направлен в сторону противоположную вектору, создаваемому током: B1↑↓B0. C другой стороны, так как значение B1 близко к единице, то модуль вектора B1 гораздо меньше модуля B0. Получается, что такое вещество намагничивается очень слабо и против внешнего поля. Интересным фактом является то, что диамагнетики при помещении в катушку с МП выталкиваются из неё.
  2. Парамагнетики. К ним относят материалы, у которых магнитная проницаемость немного больше единицы. Например, щелочные металлы, алюминий вольфрам, магний, платина. Для этих веществ характерно то, что модуль B1 параллелен вектору B0, но при этом модуль B1 меньше, чем модуль вектора B0.
  3. Ферромагнетики. К этому классу относят материалы, у которых μ намного больше единицы. Классическими представителями таких веществ являются: железо, никель, кобальт и их сплавы. Эти вещества намагничиваются вдоль поля. При этом B1 по модулю гораздо больше B0. Такие материалы сильно увеличивают магнитное поле.

В однородном МП на тело, обладающее магнитным моментом, действует только момент сил, который стремится развернуть диполь вдоль направления силовых линий. В неоднородном поле на диполь будет дополнительно действовать сила, пропорциональная величине дипольного момента и градиента поля: F = P (dB/dn) * cosj.

Как купить сплав 50НХС в Москве

Розничная и оптовая продажа осуществляется ]Форанкосталь[/anchor] в города: Казань, Пермь, Казань, Челябинск, Самара, Воронеж, Новосибирск, Москва, Брянск, Рязань, Ростов-на-Дону, Тюмень, Одинцово, Белгород и Москва. Мы готовы доставить металлопрокат в любую точку России.

Стоимость заказа стали 50НХС зависит от количества и сортамента. Для того чтобы узнать цены или оформить заказ, заполните форму на сайте и мы с вами свяжемся в течение дня.Менеджеры подробно расскажут про условия поставки и помогут подобрать для ваших нужд самую лучшую марку стали.

Наша цель предоставить каждому потенциальному покупателю выгодные условия сотрудничества и поставить качественную продукцию в срок. Заказы принимаются на сайте круглосуточно и отправляются по адресу после уточнения деталей сделки.

Изделия

Рассмотренные сплавы также ориентированы на различные методы производства.

  • Стеллит 6 подходит для наплавки и плакирования. Возможна токарная обработка стеллита 6 с применением карбидных режущих инструментов.
  • Тип 1 используют тем же образом. Возможна обработка исключительно путем шлифования.
  • Тип 12 ориентирован на отливку и подходит для наплавки.
  • ПР-C27 представлен в виде прутков и порошка. Оба варианта применяют для наплавки.
  • ПР-ВЗК и ПР-ВЗК-Р также ориентированы на наплавку и представлены в виде прутков.

Степень изменения определяется толщиной наплавленного слоя. Например, через 2 мм сокращается содержание углерода для ВЗК с 1,46 до 1,02% и кобальта с 59,19 до 55,08%. Твердость снижена на 3–4 по Роквеллу.

Детали из стеллена характеризуются высококачественной гладкой поверхностью без дефектов, что повышает устойчивость к истиранию и износу. Так, в сравнении со стеллитовыми изделиями стелленовые имеют на 40% лучшую износостойкость.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]