Амперметр цифровой своими руками. Цифровые амперметры и вольтметры

Амперметры – это устройства, которые используются с целью определения силы тока в цепи. Цифровые модификации изготавливаются на базе компараторов. По точности измерения они различаются. Также важно отметить, что приборы могут устанавливаться в цепи с постоянным и переменным током.

По типу конструкции различают щитовые, переносные, а также встроенные модификации. По назначению есть импульсные и фазочувствительные устройства. В отдельную категорию выделены селективные модели. Для того чтобы более подробно разораться в приборах, важно узнать устройство амперметра.

Схема амперметра

Обычная схема цифрового амперметра включает в себя компаратор вместе с резисторами. Для преобразования напряжения применяется микроконтроллер. Чаще всего он используется с опорными диодами. Стабилизаторы устанавливаются только в селективных модификациях. Для увеличения точности измерений используются широкополосные фильтры. Фазовые устройства оснащаются трансиверами.

Модель своими руками

Собрать цифровой амперметр своими руками довольно сложно. В первую очередь для этого потребуется качественный компаратор. Параметр чувствительности должен составлять не менее 2.2 мк. Минимальное разрешение он обязан выдерживать на уровне в 1 мА. Микроконтроллер в устройстве устанавливается с опорными диодами. Система индикации подсоединяется к нему через фильтр. Далее, чтобы собрать цифровой амперметр своими руками нужно установить резисторы.

Чаще всего они подбираются коммутируемого типа. Шунт в данном случае должен располагаться за компаратором. Коэффициент деления прибора зависит от трансивера. Если говорить про простую модель, то он используется динамического типа. Современные устройства оснащаются сверхточными аналогами. Источником стабильного тока может выступать обычная батарейка литий-ионного типа.

Вольтметр на основе микропроцессора

Выбор деталей

Перед тем, как сделать вольтметр, специалисты рекомендуют тщательно проработать все предлагаемые в различных источниках варианты. Основное требование при таком отборе – предельная простота схемы и возможность измерять переменные напряжения с точностью до 0,1 Вольта.

Анализ множества схемных решений показал, что для самостоятельного изготовления цифрового вольтметра целесообразнее всего воспользоваться программируемым микропроцессором типа РІС16F676. Тем, кто плохо знаком с техникой перепрограммирования этих чипов, желательно приобретать микросхему с уже готовой прошивкой под самодельный вольтметр.

Особое внимание при закупке деталей следует уделить выбору подходящего индикаторного элемента на светодиодных сегментах (вариант типового стрелочного амперметра в этом случае полностью исключён). При этом предпочтение следует отдать прибору с общим катодом, поскольку число компонентов схемы в этом случае заметно сокращается..

Дополнительная информация. В качестве дискретных комплектующих изделий можно использовать обычные покупные радиоэлементы (резисторы, диоды и конденсаторы).

После приобретения всех необходимых деталей следует перейти к разводке схемы вольтметра (изготовлению его печатной платы).

Подготовка платы

Перед изготовлением печатной платы нужно внимательно изучить схему электронного измерителя, учтя все имеющиеся на ней компоненты и разместив их на удобном для распайки месте.

Схема электронного прибора

Важно! При наличии свободных средств можно заказать изготовление такой платы в специализированной мастерской. Качество её исполнения в этом случае будет, несомненно, выше.

После того, как плата готова, нужно «набить» её, то есть разместить на своих местах все электронные компоненты (включая микропроцессор), а затем запаять их низкотемпературным припоем. Тугоплавкие составы в этой ситуации не подойдут, поскольку для их разогрева потребуются высокие температуры. Так как в собираемом устройстве все элементы миниатюрные, то их перегрев крайне нежелателен.

Блок питания (БП)

Для того чтобы будущий вольтметр нормально функционировал, ему потребуется отдельный или встроенный блок питания постоянного тока. Этот модуль собирается по классической схеме и рассчитан на выходное напряжение 5 Вольт. Что касается токовой составляющей этого устройства, определяющей его расчетную мощность, то для питания вольтметра вполне достаточно половины ампера.

Исходя из этих данных, подготавливаем сами (или отдаём для изготовления в специализированную мастерскую) печатную плату под БП.

Обратите внимание! Рациональнее будет сразу подготовить обе платы (для самого вольтметра и для блока питания), не разнося эти процедуры по времени.

При самостоятельном изготовлении это позволит за один раз выполнять сразу несколько однотипных операций, а именно:

  • Вырезка из листов стеклотекстолита нужных по размеру заготовок и их зачистка;
  • Изготовление фотошаблона для каждой из них с его последующим нанесением;
  • Травление этих плат в растворе хлористого железа;
  • Набивка их радиодеталями;
  • Пайка всех размещённых компонентов.

Модификации переменного тока

Амперметр (цифровой) переменного тока можно сделать самостоятельно. Микроконтроллеры у моделей используются с выпрямителями. Для увеличения точности измерения применяются фильтры широкополосного типа. Сопротивление шунта в данном случае не должно быть меньше 2 Ом. Чувствительность у резисторов обязана составлять 3 мк. Стабилизаторы чаще всего устанавливаются расширительного типа. Также важно отметить, что для сборки понадобится триод. Припаивать его необходимо непосредственно к компаратору. Допустимая ошибка приборов данного типа колеблется в районе 0.2 %.

Как переделать вольтметр постоянного напряжения в переменное

Показанная на рисунке №1 схема – это вольтметр постоянного тока. Чтобы его сделать переменным или, как говорят специалисты, пульсирующим, необходимо в конструкцию установить выпрямитель, с помощью которого постоянное напряжение преобразуется в переменное. На рисунке №2 вольтметр переменного тока показан схематически.

Данная схема работает так:

  • когда на левом зажиме находится положительная полуволна, то открывается диод D1, D2 в этом случае закрыт;
  • напряжение проходит через амперметр к правому зажиму;
  • когда положительная полуволна находится на правом конце, то D1 закрывается, и напряжение через амперметр не проходит.

В схему обязательно добавляется резистор Rд, сопротивление которого рассчитывается точно так же, как и остальные элементы. Правда, его расчетное значение делится на коэффициент, равный 2,5-3. Это в том случае, если в вольтметр устанавливается однополупериодный выпрямитель. Если используется двухполупериодный выпрямитель, то значение сопротивления делится на коэффициент: 1,25-1,5. Кстати, схема последнего изображена на рисунке №3.

Для сборки вольтметра необходимы следующие компоненты:

  • микросхемы СА31162 и КР514ИД2;
  • транзисторы КТ361 – 3 шт.;
  • резисторы постоянные мощностью 0,125 Вт, номиналом: 1кОм – 4 шт.; 470 Ом – 7 шт.; 470 кОм – 1 шт.; 4,7 кОм – 1 шт.; 820 кОм – 1 шт.;
  • переменные резисторы: 5,1 кОм (регулировка режима «предел») и 47 кОм (регулировка «установка нуля»)
  • конденсаторы: 0,22 мФ – 2шт.; 6800 пФ; электролитический на 100 мФ*150 В;
  • индикаторы АЛ324Б – 3 шт.

Детали можно брать б/у, с выводами достаточной длины для успешного монтажа. Транзисторы ключей подбираются с одинаковыми сопротивлениями переходов или с близкими значениями.

Импульсные приборы измерения

Импульсные модификации отличаются наличием счетчиков. Современные модели выпускаются на базе трехразрядных устройств. Резисторы используются только ортогонального типа. Как правило, коэффициент деления у них равняется 0.8. Допустимая ошибка в свою очередь составляет 0.2%. К недостаткам устройств можно отнести чувствительность к влажности среды. Также их запрещается использовать при минусовых температурах. Самостоятельно собрать модификацию проблематично. Трансиверы в моделях применяются только динамического типа.

Детали

Пожалуй, самое труднодоставаемое — это микросхемы СА3162Е. Из аналогов мне известна только NTE2054. Возможно есть и другие аналоги, о которых мне не известно.

С остальным значительно проще. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Например, если индикаторы будут с общим катодом, то нужно КР514ИД2 заменить на КР514ИД1 (цоколевка такая же), а транзисторы VТ1-VT3 перетащить вниз, подсоединив их коллектора к минусу питания, а эмиттеры к общим катодам индикаторов. Можно использовать дешифраторы КМОП-логики, подтянув их входы к плюсу питания при помощи резисторов.

Устройство фазочувствительных модификаций

Фазочувствительные модели продаются на 10 и 12 В. Параметр допустимой ошибки у моделей колеблется в районе 0.2%. Счетчики в устройствах применяются только двухразрядного типа. Микроконтроллеры используются с выпрямителями. Повышенной влажности амперметры данного типа не боятся. У некоторых модификаций имеются усилители. Если заниматься сборкой устройства, то потребуются коммутируемые резисторы. Источником стабильного тока может выступать обычная литий-ионная батарейка. Диод в данном случае не нужен.

Перед установкой микроконтроллера важно припаять фильтр. Преобразователь для литий-ионной потребуется переменного типа. Показатель чувствительности у него находится на уровне 4.5 мк. При резком падении напряжения в цепи необходимо проверить резисторы. Коэффициент деления в данном случае зависит от пропускной способности компаратора. Минимальное давление приборов данного типа не превышает 45 кПа. Непосредственно процесс преобразования тока занимает около 230 мс. Скорость передачи тактового сигнала зависит от качества счетчика.

Микросхема СА3162Е

Также BY42A можно встретить в двух вариантах исполнения платы, но цветовая маркировка проводов остается прежней. Для снижения влияния температуры окружающей среды на измерения, добавочный резистор изготавливают из материала обладающего малым температурным коэффициентом сопротивления. Подключение может осуществляться через специальный гнездовой разъем, или при помощи спайки. В них находится преобразователь входного сигнала в угол поворота стрелки, показывающий на шкале величину измеряемого напряжения.


Еще для снижения температурного фактора при измерениях, последовательно с катушкой амперметра включают добавочный резистор из материла такого же рода. Подключение При помощи вольтметра можно измерить текущее напряжение в сети электроснабжения.


Ясно, что пару ампер можно легко померять обычным дешёвым мультиметром, а как быть с 10, 15, 20 и более ампер? Показания шкалы также умножаются на n. Самодельный автомобильный вольтметр на микросхемах. При неправильном подключении табло прибора будет показывать нулевые значения.


Получение и передача переменного тока намного проще, чем постоянного: меньше потерь энергии, С помощью трансформаторов мы можем легко менять напряжение переменного тока.


Микросхема САЕ для цифровых вольтметра и амперметра Существуют и другие микросхемы аналогичного действия. Измерительные трансформаторы на схемах изображают как обычные трансформаторы. Нюанс при подключении китайского вольтметра амперметра

Схема селективных устройств

Селективный цифровой амперметр постоянного тока изготавливается на базе компараторов с высокой пропускной способностью. Допустимая ошибка моделей равняется 0.3 %. Работают устройства по принципу одностадийного интегрирования. Счетчики используются только двухразрядного типа. Источники стабильного тока устанавливаются за компаратором.

Резисторы применяются коммутируемого типа. Для самостоятельной сборки модели потребуются два трансивера. Фильтры в данном случае могут значительно повысить точность измерений. Минимальное давление приборов лежит в районе 23 кПа. Резкое падение напряжения наблюдается довольно редко. Сопротивление шунта, как правило, не превышает 2 Ом. Токоизмерительная частота зависит от работы компаратора.

Последовательность размещения и монтажа амперметра

Входной сигнал по току (не более 1 А) подаётся от стабилизированного блока питания через шунтирующий резистор, допустимое напряжение на котором не должно быть более 40…50 В. Далее, проходя через операционный усилитель, сигнал поступает на светодиоды. Поскольку значение тока во время прохождения сигнала изменяется, то соответственно будет изменяться и высота столбика. Управляя током нагрузки, можно регулировать высоту диаграммы, получая результат с различной степенью точности.

Монтаж платы с SMD-компонентами, по желанию пользователя, можно размещать либо горизонтально, либо вертикально. Смотровое окошко перед началом тарировки необходимо перекрывать тёмным стеклом (подойдёт фильтр с кратностью 6…10х от обычной сварочной маски).

Тарировка цифрового амперметра состоит в подборе минимального значения нагрузки по току, при которой светодиод будет светиться. Варьирование настройки производится экспериментально, для чего в схеме предусматривается резистор с небольшим (до 100 мОм) сопротивлением. Погрешность показаний такого амперметра обычно не превышает нескольких процентов.

Вы знали, что можно переделать старый вольтметр в амперметр? Как это сделать — смотрите видео:

Универсальные приборы измерений

Универсальные приборы измерений подходят больше для бытового использования. Компараторы в устройствах часто устанавливаются не большой чувствительности. Таким образом, допустимая ошибка лежит в районе 0.5%. Счетчики используются трехразрядного типа. Резисторы применяются на базе конденсаторов. Триоды встречаются как фазового, так и импульсного типа.

Максимальное разрешение приборов не превышает 12 мА. Сопротивления шунта, как правило, лежит в районе 3 Ом. Допустимая влажность для устройств составляет 7 %. Предельное давление в данном случае зависит от установленной системы защиты.

Гальванометры (аналоговые счетчики)

Аналоговые счетчики располагают иглами, которые поворачиваются, чтобы отмечать на шкале цифры. Это и отличает их от цифровых приборов, выводящих цифровые символы прямо на экран. В центре большинства аналоговых приборов находится гальванометр (G). Ток проходит сквозь него и приводит к пропорциональному перемещению (отклонение иглы).

Гальванометр характеризуется сопротивлением и текущей чувствительностью. Последнее – ток, осуществляющий значительное отклонение иглы гальванометра (максимальный ток). К примеру, гальванометр, чья токовая чувствительность составляет 50 мкА достигает максимального прогиба в 50 мкА.

Если подобный прибор обладает сопротивлением в 20 Ом, то только напряжение V = IR = (50 мкА) (25 Ом) = 1.25 мВ создает полномасштабное считывание. Объединив с ним резисторы, можно рассматривать его в качестве вольтметра или амперметра.

Встраиваемые модификации

Цифровой встраиваемый амперметр выпускается на базе опорных компараторов. Пропускная способность у моделей довольно высокая, и допустимая погрешность равняется около 0.2 %. Минимальное разрешение приборов не превышает 2 мА. Стабилизаторы используются как расширительного, так и импульсного типа. Резисторы устанавливаются высокой чувствительности. Микроконтроллеры часто применяются без выпрямителей. В среднем процесс преобразования тока не превышает 140 мс.

Однополупериодный синхронный выпрямитель для амперметра

На рис 1 приведена схема однополупериодного синхронного выпрямителя для амперметра с линеаризованной шкалой. В положительный полупериод переменного напряжения (плюс на верхних концах обмоток II и III) открываются диоды VD1 и VD2 подключая микроамперметр к шунту Rш. В отрицательный полупериод диоды закрыты.

В открытом состоянии диоды имеют малое дифференциальное сопротивление, и нелинейность этого сопротивления невелика, поэтому шкала получается практически линейной.

Рис. 1. Схема амперметра с трасформатором.

При использовании микроампер метров со шкалой 50 .200 мкА с максимальным падением напряжения на рамке не более 150 мВ минимальное напряжение на обмотке III может составлять 1,5. 2 В для германиевых и 2. 2,5 В для кремниевых диодов (при меньшем напряжении его нестабильность заметно сказывается на показаниях амперметра).

Максимальное напряжение ограничивается максимально допустимым обратным напряжением используемых диодов Минимальный ток диодов должен в 10.. 20 раз превышать максимальный ток микроамперметра. Дополнительную обмотку можно изготовить самостоятельно, намотав несколько витков тонкого изолированного про вода на катушку трансформатора, если его конструкция позволяет это сделать.

Резисторы R3 и R4 служат для подстройки нуля амперметра, сдвиг которого возникает за счет тока диода VD2, протекающего через шунт, и разброса параметров диодов.

Синфазность подключения обмоток II и III важна при сравнительно низком напряжении обмотки III (менее 2 В), так как при противофазном включении этих обмоток (в этом случае полярность подключения микроамперметра нужно изменить) в приборе появляется нелинейность шкалы (цена деления в конце шкалы плавно увеличивается), что, кстати, иногда может оказаться полезным. Однако при напряжении на обмотке III выше 4 ..5 В эта нелинейность практически не заметна и на фазу включения обмоток можно не обращать внимания

Для защиты микроамперметра от случайных перегрузок параллельно его выводам полезно включить кремниевый диод Д220 КД522 или КД521 в прямом направлении, предварительно убедившись, что он не влияет на показания микроамперметра в конце шкалы.

Модели DMK

Цифровые амперметры и вольтметры данной компании пользуются большим спросом. В ассортименте указанной фирмы имеется множество стационарных моделей. Если рассматривать вольтметры, то они выдерживают максимальное давление 35 кПа. В данном случае транзисторы применяются тороидального типа.

Микроконтроллеры, как правило, устанавливаются с преобразователями. Для лабораторных исследований устройства данного типа подходят идеально. Цифровые амперметры и вольтметры этой компании производятся с защищенными корпусами.

Устройство Торех

Указанный амперметр (цифровой) производится с повышенной проводимостью тока. Максимальное давление устройство выдерживает в 80 кПа. Минимальная допустимая температура амперметра равняется -10 градусов. Повышенной влажности указанный измерительный прибор не боится. Устанавливать его рекомендуется рядом с источником тока. Коэффициент деления равняется только 0.8. Максимальное давление амперметр (цифровой) выдерживает в 12 кПа. Потребляемый ток устройства составляет около 0.6 А. Триод используется фазового типа. Для бытового использования данная модификация подходит.

Как определить цену деления амперметра

Разнообразие приборов создает естественные затруднения в ходе проведения измерений. Следующий пример поможет разобраться с методикой правильного определения значений на стрелочном индикаторе. В любом случае начинают с буквенного обозначения на циферблате:

  • «А» – это амперы, пересчет не нужен;
  • «mA» – миллиамперы, итоговое значение вычисляют умножением на 0,001.

Этим прибором измеряют силу тока до 4 ампер включительно. Перевод значений не нужен, потому что есть о. Чтобы узнать цену одного деления, вычитают из большего меньшее значение соседних цифр. Далее делят на количество пустых промежутков между рисками.

Справка. «РИСКА – линия (штрих), нанесённая … на шкалу измерительного прибора». Большая политехническая энциклопедия под редакцией Рязанцева, вып. 2011 г.

В приведенном примере:

В описании к прибору можно найти допустимую производителем погрешность. Эту величину, как правило, указывают в процентах.

Устройство Lovat

Указанный амперметр (цифровой) делается на базе двухразрядного счетчика. Проводимость тока модели равняется только 2.2 мк. Однако важно отметить высокую чувствительность компаратора. Система индикации используется простая, и пользоваться прибором очень комфортно. Резисторы в этот амперметр (цифровой) установлены коммутируемого типа.

Также важно отметить, что они способны выдерживать большую нагрузку. Сопротивление шунта в данном случае не превышает 3 Ом. Процесс преобразования тока происходит довольно быстро. Резкое падение напряжения может быть связано только с нарушением температурного режима прибора. Допустимая влажность указанного амперметра равняется целых 70 %. В свою очередь максимальное разрешение составляет 10 мА.

Вольтметр и амперметр для блока питания из мультиметра M830B

Вольтметр и амперметр для блока питания из мультиметра

Идея переделки мультиметра для контроля напряжения и тока, возникла во время изготовления блока питания. Для индикации напряжения предполагалась применить стрелочный индикатор. Уже и разобрал его, нарисовал новую шкалу, но подумал и решил, что цифровой индикатор будет гораздо лучше смотреться. Как-то в журнале «Радио» была статья переделки компьютерного блока питания и там для контроля выходного напряжения и тока применялась микросхема АЦП КР572ПВ2А, а для отображения информации служили светодиодные цифровые индикаторы. Так как стоимость микросхемы, индикаторов и деталей сравнима с ценой мультиметра, то было принято решение о переделке мультиметра для контроля напряжения и тока в блоке питания.

Основным смыслом переделки было уменьшение размеров платы с индикатором, т.е. просто часть платы надо было отрезать. Для переделки был приобретен самый простой и дешевый китайский мультиметр M830B. Схему мультиметра M830B можно скачать в нашем файловом архиве. Предел измерения величины напряжения нашей конструкции составит 200 В, а предел по току 10 А. Для выбора режима измерения «Напряжение» — «Ток» используется переключатель S1 с двумя группами контактов. На схеме показано положение переключателя в режиме измерения напряжения.

Вначале надо разобрать мультиметр и вытащить плату. Вид платы со стороны деталей вы можете увидеть на фотке.

Наша конструкция будет размещена на дв ух платах. Одна плата с индикатором, другая плата с деталями входной части мультиметра и дополнительным ст абилизатором на 9 вольт. Схема второй платы приведена на картинке. В качестве резисторов делителя используются выпаянные резисторы с платы мультиметра. Их обо значение на схеме, соответствует обозначени ям на плате мультиметра M830B.

Также на схеме пр иведены дополнительные пояснения. Буквы в кружочках соответствуют точкам подключения одной платы к другой. Для питания конструкции используется маломощный стабилизатор напряжения, который подключается к отдельной обмотке трансформатора.

Собственно при ступим.

Выпаиваем R1 8, R9, R6, R5. Рез и с то ры R 6 и R5 сохраняем для входной части нашей конструкции.

Отрезаем верхний контакт R10 от схемы и вырезаем часть дорожки(на фотке помечено крестиками). Выпаиваем R10.

Выпаиваем R12 и R11.

R12 и R11 соединяем последовательно. И припаиваем одним концом к верхнему контакту R10, а другим к отрезанной от R10 дорожке. Выпаиваем R20 и запаиваем его на место R9.

Выпаиваем R16 и сверлим для него новые отверстия (см. фотку)

Переворачиваем плату индикатором к себе.

Ближний от индикатора контакт R9(теперь там R20) отрезаем от схемы(помечено крестиком). Дальние от индикатора контакты R9(теперь там R20) и R19 соединяем вместе (со стороны индикатора), на фотке обозначено красной перемычкой.

Верхний контакт R10 (там теперь R11 и R12) соединяем с нижним контактом R13, на фотке обозначено красной перемычкой.

Удаляем часть дорожек помеченных крестиками. И припаиваем перемычку к ближнему от индикатора контакту R9(теперь там R20), взамен удаленной дорожки.

Удаляем помеченные крестиком дорожки, и подготавливаем контактные пятачки для распайки со второй платой, на фотке указаны стрелочками.

Припаиваем перемычку.

Припаиваем контактные провода от второй платы, соблюдая соответствие букв(a-A, b-B и т.д.)

На этой фотке конструкция встроена в блок питания, для которого и создавалась. При подключенной нагрузке, нажатием кнопки «Напряжение-Ток», на индикаторе высвечивается значение протекающего тока.

Модель DigiTOP

Этот цифровой вольтметр-амперметр постоянного тока выпускается с опорными диодами. Счетчик в нем предусмотрен двухразрядного типа. Проводимость компаратора находится на отметке в 3.5 мк. Микроконтроллер применяется с выпрямителем. Чувствительность тока у него довольно высокая. Источником питания выступает обычная батарейка.

Резисторы используются в приборе коммутируемого типа. Стабилизатор в данном случае не предусмотрен. Триод установлен только один. Непосредственно преобразование тока происходит довольно быстро. Для бытового использования этот прибор подходит хорошо. Фильтры для увеличения точности измерения предусмотрены.

Если говорить про параметры вольтметра–амперметра, то важно отметить, что рабочее напряжение находится на уровне 12 В. Потребление тока в данном случае равняется 0.5 А. Минимальное разрешение представленного прибора составляет 1 мА. Сопротивление шунта располагается на отметке в 2 Ом.

Коэффициент деления вольтметра-амперметра только 0.7. Максимальное разрешение указанной модели составляет 15 мА. Непосредственно процесс преобразования тока занимает не более 340 мс. Допустимая ошибка указанного прибора располагается на уровне в 0.1 %. Минимальное давление система выдерживает в 12 кПа.

Амперметр для автомобильного зарядного устройства на ATtiny13

Как-то раз в руки к автору этих строк попало весьма интересное устройство, рожденное в СССР, в далеком 1976 году – его просто отдали за ненадобностью.


Звали это устройство АДЗ-101У2, и оно представляло собой типичный образчик советского конструктивизма: тяжелый двадцатикилограммовый “чемодан”, с ручкой для переноски в верхней части и мощным однофазным трансформатором внутри. Но самое интересное, что у этого “чемодана” напрочь отсутствовала задняя панель – и вовсе не потому, что прибор успел ее “посеять”, нет. А дело здесь было в том, что обе его панели являлись… передними!

С одной своей стороны “чемодан” представлял собой сварочный аппарат, а с другой – зарядное устройство для автомобильных аккумуляторов. И если как “сварочник” он особых эмоций не вызвал – еще бы, ведь всего-то 50А переменного тока; то вот “зарядник” – вещь в хозяйстве, безусловно, нужная. Испытания прибора подтвердили его полную боеспособность (даже сварка работала!), но без недостатков, разумеется, не обошлось. Суть проблемы состояла в том, что штатный амперметр “зарядника” скрылся в неизвестном направлении, и предыдущий владелец аппарата подыскал ему вполне “равноценную” замену – автомобильный амперметр, скрученный с какого-то военного грузовика, и имеющий очень “информативную” шкалу в ±30 А!

Понятно, что следить за зарядом аккумулятора (а ток зарядки – всего лишь 3-6 А!) при помощи такого вот прибора, мягко говоря, проблематично – как будто и нет его вовсе… Поэтому решено было заменить “грузовиковый показометр” на какой- либо более или менее адекватный прибор, с внятной шкалой на 0-10 А. Идеальным кандидатом на эту роль представлялся стрелочный щитовой амперметр со встроенным шунтом – один из тех, которые раньше использовались практически во всех “зарядниках” советского производства, да и много где еще.

Однако, первая же прогулка по электромагазинам и “развалам” принесла разочарование: оказывается, ничего, хотя бы отдаленно напоминающего искомый прибор, уже давным-давно в продаже нет… А так-так в то время автор еще не был знаком с бескрайними просторами китайских чудосайтов, то руки вновь потянулись к паяльнику, в результате чего и было разработано устройство, схема которого приведена на рис.1, а характеристики – в табл.1:

Для вывода результатов измерения в данном амперметре решено было использовать пару 7-сегментых LED- индикаторов. Такие индикаторы, несмотря на некоторую свою архаичность по сравнению с новомодными LCD-модулями типа 16хх, обладают также и рядом неоспоримых преимуществ: они гораздо надежнее и прочнее; не портятся и не мутнеют от контакта с нефтепродуктами (а замасленные руки в гараже – дело обычное, цифры на LED-индикаторах ярче и гораздо “читабельнее” – особенно издали; и к тому же, никакой холод в гараже светодиодам не страшен – в отличие от ЖК, который на морозе попросту “слепнет”.

Ну а последним доводом в пользу светодиодной матрицы – в контексте данной разработки – стал тот факт, что длинный 1602 просто-напросто не вписывался по размерам в штатное отверстие для амперметра (круглое и очень небольшое!) на корпусе ЗУ. Определившись с типом индикатора, встал другой вопрос – какой же микроконтроллер использовать в качестве основы для данного устройства. В том, что эту схему нужно строить именно на МК, сомнений никаких не возникало -делая амперметр на “КМОП-россыпи”, можно повредиться рассудком.

На первый взгляд, самым очевидным решением является “рабочая лошадка” ATtiny2313 – этот МК имеет достаточно развитую архитектуру, и вполне подходящее для подключения LED-матрицы количество линий ввода-вывода. Однако, здесь все оказалось не так уж и просто – ведь для измерения тока в состав МК обязательно должен входить аналогово-цифровой преобразователь, но инженеры фирмы Atmel почему-то не оснастили “2313-й” данной функцией… Другое дело семейство Меда: эти чипы обязательно имеют “на борту” модуль АЦП.

Но, с другой стороны, даже АТМедав – как самый простой представитель “старшего” семейства – обладает гораздо большей функциональностью, чем того требует построение простого амперметра. А это уже не самое лучшее решение с точки зрения классического подхода к проектированию!

Под “классическим подходом к проектированию” здесь подразумевается так называемый “принцип необходимого минимума” (горячим приверженцем которого, в пику новомодным “Ардуинам”, является и автор этих строк), согласно которому любую систему следует проектировать с использованием минимально возможного количества ресурсов; а окончательный результат должен содержать в себе как можно меньше незадействованных элементов.

Поэтому, в соответствии с этим принципом – простому прибору – простой микроконтроллер, и никак иначе! Правда, и не все простые МК подойдут для поставленной задачи. Взять, к примеру, ATtinyl3 – в нем есть АЦП, он прост и недорог; да вот только линий ввода- вывода – для подключения матрицы из двух “семисегментников” – у него явно маловато… Хотя, если немного пофантазировать, то такая проблема вполне разрешима – при помощи копеечного счетчика К176ИЕ4 и несложного алгоритма, этим счетчиком управляющего.

Вдобавок, у такого подхода есть даже положительные стороны – во-первых, отпадает необходимость “навешивать” на каждый сегмент индикатора по токоограничительному резистору (генераторы тока уже имеются в выходных каскадах счетчика); а во-вторых, в данной схеме можно использовать индикатор как с общим катодом, так и с общим анодом – для перехода на “общий анод” нужно изменить подключение транзисторов VT1 и VT2, выв. 6 DD2 подключить к линии +9В через резистор 1 кОм, а левый вывод R3 соединить с “землей”. Для того, чтобы управлять счетчиком при помощи МК, нужно задействовать всего две линии: одну – для сигнала счета (С), а другую – для сигнала сброса (R).

Причем, в ходе испытания устройства выяснилось, что КМОП-микросхема К176ИЕ4, будучи подключенной напрямую к линиям МК, вполне надежно работает с его ТТЛ- уровнями – без какого-либо дополнительного согласования. А еще две линии МК управляют ключами VT1-VT2, создавая динамическую индикацию. Фрагмент исходного кода, где реализована процедура управления счетчиком DD2, приведен в листинге: можно зажигать тот или иной разряд индикатора.

Кстати, благодаря счетчику К176ИЕ4, к любому МК можно подключить индикаторную матрицу 7×4, задействовав для этого только 6 линий ввода-вывода (две – для управления счетчиком, и еще четыре – для динамического переключения разрядов). А если в “напарники” к К176ИЕ4 добавить еще один счетчик – декадный К176ИЕ8 – чтобы использовать его для “сканирования” разрядов; то появится возможность подключить к МК индикаторную матрицу величиной до 10 знакомест, выделив для этого всего лишь 5 линий ввода-вывода (две – для управления К176ИЕ8; две – для К176ИЕ4; и еще одна – для гашения индикатора в момент счета К176ИЕ4)!

В подобном случае процедура написана на низкоуровневом языке AVR-Assembler; однако, она легко может быть переведена и на любой язык высокого уровня. В регистре Temp процедура получает число, которое необходимо отправить в счетчик К176ИЕ4 для отображения на индикаторе; линия 1 порта В микроконтроллера подключена ко входу сброса счетчика (R), а линия 2 – к его счетному входу (С).

Чтобы избежать мерцания чисел в момент переключения счетчика, перед вызовом данной процедуры необходимо погасить оба разряда, закрыв транзисторы VT1 и VT2 подачей лог.О на линии 0 и 4 порта В МК; ну а после того, как процедура отработает, уже алгоритм динамической индикации будет сводиться к управлению счетчиком К176ИЕ8, что во многом аналогично алгоритму передачи цифры в счетчик К176ИЕ4, приведенному в листинге выше.

К недостаткам же такого подключения индикаторной матрицы – помимо использования “лишней” микросхемы – можно отнести необходимость введения в схему дополнительного питания +9 В, т.к. попытки запитать КМОП-счетчики от +5 В, увы, не увенчались успехом… В качестве индикатора в данном устройстве применим практически любой сдвоенный “семисегментник” с общими катодами, предназначенный для работы в схемах с динамической индикацией. Допустимо использовать и четырехразрядную матрицу, задействовав у нее только два из четырех имеющихся разрядов.

В авторском варианте индикаторное “табло” и вовсе было собрано на отрезке макетной платы “решета”, из двух “древних” одноразрядных АЛС321… Правда, в процессе работы над схемой амперметра всплыла небольшая проблема – с подключением десятичной запятой: ведь она должна светиться в старшем разряде, и не гореть – в младшем. И если все делать “по уму”, то неплохо было бы выделить – для динамического управления этой самой запятой – еще одну ножку МК (т.к. в К176ИЕ4 никаких средств для управления запятыми не предусмотрено) – чтобы на нее “повесить” вывод индикатора, отвечающий за запятые.

Но, поскольку все линии ввода-вывода МК уже были заняты, то бороться с этой проблемой пришлось отнюдь не самым изящным способом: обе запятые решено было оставить постоянно зажженными, запитав соответствующий вывод индикаторной “матрицы” от линии +9В через токоограничительный резистор R3 (подбирая его сопротивление, можно выровнять яркость свечения запятой относительно остальных сегментов); а лишнюю запятую в младшем разряде (крайнюю правую) просто замазать каплей черной нитрокраски. С технической точки зрения такое решение сложно назвать идеальным; но в глаза “загримированная” подобным образом запятая совершенно никак не бросается…

В качестве датчика тока используются два параллельно соединенных резистора R1 и R2, мощностью по 5 Вт каждый. Вместо пары R1 и R2 вполне можно установить и один резистор сопротивлением 0,05 Ом – в таком случае его мощность должна быть не менее 7 Вт. Более того, в “прошивке” микроконтроллера предусмотрена возможность выбора сопротивления измерительного шунта – в данной схеме может быть применен как 0,05-омный, так и 0,1-омный датчик тока.

Для того, чтобы задать микроконтроллеру сопротивление шунта, использующегося в конкретном случае, необходимо записать определенное значение в ячейку памяти EEPROM, расположенную по адресу 0x00 – для сопротивления 0,1 Ом это может быть любое число меньше 128 (в таком случае МК, будет делить результат измерений на 2); а при использовании шунта сопротивлением 0,05 Ом в эту ячейку, соответственно, следует записать число больше 128.

И если планируется эксплуатировать устройство с приведенным на схеме 0,05-омным шунтом, то о записи указанной ячейки можно и вовсе не беспокоиться, т.к. у нового (или “стертого в ноль”) МК во всех ячейках памяти итак будет число 255 (OxFF). Питать прибор можно как от отдельного источника – напряжением не менее 12 В, так и от силового трансформатора самого зарядного устройства. Если питание будет производиться от трансформатора ЗУ, то желательно задействовать для этого отдельную обмотку, никак не связанную с зарядной цепью; однако, допускается питать амперметр и от одной из зарядных обмоток.

В этом случае напряжение питания нужно брать до выпрямительного моста “зарядника” (т.е., непосредственно с обмотки), а в разрыв обоих проводов питания амперметра включить по резистору 75 Ом/1 Вт. Резисторы необходимы для зашиты “отрицательных” диодов моста VD1-4 от прохождения через них части зарядного тока.

Дело в том, что если подключить прибор к зарядной обмотке, не установив этих резисторов то, учитывая общую “землю” у моста VD1-4 и диодного моста зарядного устройства, около половины зарядного тока аккумулятора будет возвращаться в обмотку не через мощные диоды выпрямителя ЗУ, а через “отрицательное” плечо моста VD1-4, вызывая сильный нагрев маломощных 1N4007.

Установка же этих резисторов ограничит ток питания прибора и оградит диодный мост VD1-4 от протекания зарядного тока, который теперь, практически полностью, будет течь по “правильной” цепи – через мощные диоды выпрямителя ЗУ.

Печатная плата для данного амперметра разрабатывалась под конкретные посадочные места в корпусе конкретного ЗУ; ее чертеж приведен на рис.2. Индикаторная матрица устанавливается отдельно – на небольшом платке (отрезке “макетки” 30×40), которая крепится к основной плате болтами М2,5 через дистанционные втулки, со стороны монтажа; и соединяется с ней 10-жильным шлейфом. Еще одной частью получившегося “бутерброда” является декоративная передняя панель из оргстекла, покрашенная с обратной стороны нитрокраской из баллончика (не закрашенным должен остаться только небольшой прямоугольник – “окошко” для индикатора).

Передняя панель также крепится к основной плате со стороны монтажа (болтами М3 с дистанционными втулками – ими же прибор крепится и к корпусу ЗУ). Печатные дорожки сильноточной цепи, идущие к резисторам R1 и R2, следует выполнить как можно более широкими, и припаять к ним выводы резисторов на всю длину, заодно усилив монтаж толстым слоем припоя. В качестве выводов для подключения прибора к ЗУ желательно использовать два болта М3, припаяв их головки к плате, и закрепив с другой стороны гайками.

При записи “прошивки” в МК его необходимо настроить для работы на частоте 1,2 МГц. от внутреннего тактового генератора. Для этого частоту тактирования следует выбрать равной 9,6 МГц, и включить внутренний делитель такта на 8. Для увеличения надежности работы также желательно активировать внутренний супервайзор питания (модуль BOD), настроив его на сброс МК при “просадке” питающего напряжения ниже 2.7 В. Все настройки производятся при помощи записи соответствующих значений в конфигурационные Fuse-ячейки: SUT1=1, SUT0=0, CKDIV8=0, BODLEVEL1 =0. BODLEVELO= 1. WDTON=1. Остальные “фъюзы” можно оставить по умолчанию.

Программное обеспечение к этой статье можно скачать на сайте журнала: radiocon.nethouse.ru в разделе «НЕХ-файлы».

Прошивка proshivka-ampermetr-10a-attiny13

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]