Молибден – полезные свойства и перспективы металла

42Молибден
Mo

95,95

4d55s1

Молибден

— элемент шестой группы (по старой классификации — побочной подгруппы шестой группы) пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 42. Обозначается символом
Mo
(лат. Molybdaenum). Простое вещество
молибден
— переходный металл светло-серого цвета. Главное применение находит в металлургии.

Содержание

  • 1 История и происхождение названия
  • 2 Нахождение в природе 2.1 Месторождения
  • 2.2 В космосе
  • 3 Добыча
      3.1 Генетические группы и промышленные типы месторождений
  • 4 Получение
  • 5 Физические свойства
      5.1 Изотопы
  • 6 Химические свойства
  • 7 Применение
  • 8 Биологическая роль
      8.1 Круговорот азота
  • 8.2 Микроэлемент
  • 9 Стоимость
  • 10 Физиологическое действие
  • Суточная потребность

    Точно не определена, и приведенные цифры носят в большей степени рекомендательный характер.

    КатегорияСуточная норма, мкг
    Младенцы до 2 лет5-6
    Дети 3-5 лет8-10
    Дети 6-8 лет10-20
    Дети 9-13 лет20-30
    Подростки-мальчики50-60
    Подростки-девочки40-50
    Взрослые мужчины70-80
    Взрослые женщины70
    Беременные80

    При тяжелых заболеваниях, физических нагрузках, потребность в Мо может повышаться до 100 мкг. Некоторые полагают, что в экстремальных ситуациях, при патологических состояниях молибдена нужно еще больше – до 300-400 мкг/сут.

    История и происхождение названия

    Открыт в 1778 году шведским химиком Карлом Шееле, который, прокаливая молибденовую кислоту, получил MoO3. В металлическом состоянии впервые получен П. Гьельмом в 1781 году восстановлением оксида углём: он получил молибден, загрязнённый углеродом и карбидом молибдена. Чистый молибден в 1817 году получил Й. Берцелиус восстановлением оксида водородом.

    Название происходит от др.-греч. μόλυβδος, означающего «свинец». Оно дано из-за внешнего сходства молибденита (MoS2), минерала, из которого впервые удалось выделить оксид молибдена, со свинцовым блеском (PbS). Вплоть до XVIII века молибденит не отличали от графита из-за свинцового блеска, эти минералы носили общее название «молибден».

    Синтетические аналоги

    Его не производят в виде фармпрепаратов. Зато он присутствует в многочисленных БАДах и мультивитаминных комплексах (МультиМакс, Алфавит, Дуовит, Центрум, Витрум, и др.).

    Эти препараты используют как общеукрепляющие, иммуностимулирующие средства, в качестве профилактики и вспомогательного лечения болезней ЖКТ, сердца, сосудов, почек, нервной и репродуктивной системы.

    В медицине применяют еще один препарат Молибден 99, но не в лечебных, а в диагностических целях. Для диагностики инфаркта, опухолевых процессов, и ряда других заболеваний прибегают к радиоизотопному сканированию.

    Здоровый и больной орган неодинаково поглощают радиоизотопы, и эти изменения отчетливо видны в специальном устройстве, гамма-камере.

    В качестве радиоизотопа используют Технеций 99. А сырьем для его получения является другой радиоизотоп, Молибден 99, 99Мо. От стабильного молибдена, 98Мо , 99Мо отличается «лишним» нейтроном в атомном ядре. 99Мо получают в ходе ядерных реакций из урана или из его стабильного варианта.

    Нахождение в природе

    Содержание в земной коре — 3⋅10−4 % по массе. В свободном виде молибден не встречается. В земной коре молибден распространён относительно равномерно. Меньше всего содержат молибдена ультраосновные и карбонатные породы (0,4—0,5 г/т). Концентрация молибдена в породах повышается по мере увеличения SiO2. Молибден находится также в морской и речной воде, в золе растений, в углях и нефти. Содержание молибдена в морской воде колеблется от 8,9 до 12,2 мкг/л для разных океанов и акваторий. Общим является то, что воды вблизи берега и верхние слои меньше обогащены молибденом, чем воды на глубине и вдали от берега. Наиболее высокие концентрации молибдена в породах связаны с акцессорными минералами (магнетит, ильменит, сфен), однако основная масса его заключена в полевых шпатах и меньше в кварце. Молибден в породах находится в следующих формах: молибдатной и сульфидной в виде микроскопических и субмикроскопических выделений, изоморфной и рассеянной (в породообразующих минералах). Молибден обладает большим сродством с серой, чем с кислородом, и в рудных телах образуется сульфид четырёхвалентного молибдена — молибденит. Для кристаллизации молибденита наиболее благоприятны восстановительная среда и повышенная кислотность. В поверхностных условиях образуются преимущественно кислородные соединения MO6+. В первичных рудах молибденит встречается в ассоциации с вольфрамитом и висмутином, с минералами меди (медно-порфировые руды), а также с галенитом, сфалеритом и урановой смолкой (в низкотемпературных гидротермальных месторождениях). Хотя молибденит считается устойчивым сульфидом по отношению к кислым и щелочным растворителям, в природных условиях при длительном воздействии воды и кислорода воздуха молибденит окисляется, и молибден может интенсивно мигрировать с образованием вторичных минералов. Этим можно объяснить повышенные концентрации молибдена в осадочных отложениях — углистых и кремнисто-углистых сланцах и углях.

    Известно около 20 минералов молибдена. Важнейшие из них: молибденит MoS2 (60 % Mo), повеллит CaMoO4 (48 % Mo), молибдит Fe(MoO4)3·nH2O (60 % Mo) и вульфенит PbMoO4.

    Месторождения

    Крупные месторождения молибдена известны в США, Мексике, Чили, Канаде, Австралии, Норвегии, России. В России молибден выпускают на Сорском ферромолибденовом заводе. Более 7 % от мировых запасов молибдена расположены в Армении, причем 90 % из них сосредоточены в Каджаранском медно-молибденовом месторождении.

    В космосе

    Аномально высокое содержание молибдена наблюдается в звёздных образованиях, состоящих из красного гиганта (или сверхгиганта), внутри которого находится нейтронная звезда — объектах Ландау — Торна — Житковой.

    Обработка молибдена

    Обработка молибдена затруднена в связи с невысокой вязкостью при низких температурах. Также он имеет малую пластичность, поэтому для его обработки применяются следующие методы:

    1. горячее деформирование:
        ковка;
    2. прокатка;
    3. протяжка;
    1. термообработка;
    2. механическая обработка.

    При обработке небольших заготовок используются обжимные машины. Крупные заготовки прокатываются на малых станах или получают форму на протяжных станках.

    Внешний вид молибдена

    Если возникает необходимость механической обработки резанием, то механическая обработка молибдена ведется инструментом, изготовленным из марок быстрорежущих сталей. Заточка углов инструмента при токарной обработке должна соответствовать углам заточки для обработки чугуна.

    Термообработка молибдена характеризуется высокой прокаливаемостью из-за его содержания в сталях. Проведенная закалка повышает твердость и износоустойчивость ответственных деталей.

    Добыча

    Залежи молибдена и его добыча по странам

    СтранаЗалежи (тыс. т)20012002200320042005200620072014
    США270037,632,329,941,558,059,859,468,2
    Китай300028,230,3332,2229,040,043,9446,0103,0
    Чили190533,529,533,441,4847,7543,2841,148,8
    Перу8508,358,329,639,617,3217,2117,2517,0
    Канада958,567,958,895,77,917,278,09,7
    Россия3603,934,293,573,113,843,944,164,8
    Мексика1355,523,433,523,74,252,524,014,4
    Армения6353,43,63,53,02,753,03,07,1
    Иран1202,62,42,41,52,02,02,54,0
    Монголия2941,421,591,61,71,191,21,52,0
    Узбекистан2030,580,50,50,50,570,60,50,5
    Болгария100,40,40,20,20,20,40,4?
    Казахстан1300,090,050,050,230,230,250,4
    Киргизия1000,250,250,250,250,250,250,25?
    Прочие1002
    Итого11539134,4124,91129,63141,47186,26185,66188,71

    Генетические группы и промышленные типы месторождений

    1. Контактово-метасоматические (скарновые).

    2. Гидротермальные.

    А. Высокотемпературные (грейзеновые). Б. Среднетемпературные. а. кварц-молибденитовые. б. кварц-сфалерит-галенит-молибденитовые. в. кварц-халькопирит-молибденитовые (меднопорфировые руды). г. настуран-молибденитовые.

    Мировые запасы

    Общемировые выявленные молибденовые ресурсы, присутствующие в недрах 35 стран оцениваются в 11,54 млн. тонн (прогнозные – 22,62 млн. тонн). Наибольшими подтверждёнными запасами, по данным Геологической службы США, располагают:

    • Китай – 3 млн. тонн.
    • США – 2,7 млн. тонн.
    • Чили – 1,905 млн. тонн.
    • Канада – 0,95 млн. тонн.
    • Перу – 0,85 млн. тонн.
    • Армения – 0,635 млн. тонн.
    • Аргентина – 0,372 млн. тонн.
    • Монголия – 0,294 млн. тонн.
    • Колумбия – 0,277 млн. тонн.
    • Россия – 0,24 млн. тонн.
    • Панама – 0,227 млн. тонн.
    • Узбекистан – 0,203 млн. тонн.
    • Мексика – 0,135 млн. тонн.
    • Казахстан – 0,13 млн. тонн.
    • Иран – 0,12 млн. тонн.
    • Киргизия – 0,1 млн. тонн.
    • Папуа-Новая Гвинея – 0,099 млн. тонн.

    Физические свойства

    Молибден — светло-серый металл с кубической объёмноцентрированной решёткой типа α-Fe (a

    = 3,14 Å;
    z
    = 2; пространственная группа
    Im3m
    ), парамагнитен, шкала Мооса определяет его твёрдость 4,5 баллами. Механические свойства, как и у большинства металлов, определяются чистотой металла и предшествующей механической и термической обработкой (чем чище металл, тем он мягче). Обладает крайне низким коэффициентом теплового расширения. Молибден является тугоплавким металлом с температурой плавления 2620 °C и температурой кипения 4639 °C.

    Изотопы

    Основная статья: Изотопы молибдена

    Природный молибден состоит из семи изотопов: 92Mo (15,86 % по массе),94Mo (9,12 %), 95Mo (15,70 %), 96Mo (16,50 %), 97Mo (9,45 %), 98Mo (23,75 %) и 100Mo (9,62 %). Шесть из них стабильны, 100Mo слаборадиоактивен (период полураспада 8,5⋅1018 лет, что в миллиард раз больше возраста Вселенной). Из искусственных изотопов самым стабильным является 93Mo, с периодом полураспада 4 тысячи лет, период полураспада остальных изотопов не превышает 3 суток.

    Достоинства / недостатки

      Достоинства:
    • имеет высокую точку плавления, а следовательно — жаропрочность;
    • т.к. плотность данного металла (10200 кг/м3) почти в два раза меньше плотности вольфрама (19300 кг/м3), то сплавы на основе молибдена обладают значительно большей удельной прочностью (при температурах ниже 1370 °С);
    • имеет высокий модуль упругости;
    • малый температурный коэффициент расширения;
    • обладает хорошей термостойкостью;
    • малое сечение захвата тепловых нейтронов;
    • для молибдена характерна высокая коррозионная стойкость. Данный металл устойчив в большей части щелочных растворов, а также в серной, соляной и плавиковой кислотах при разных температурах и концентрациях.
      Недостатки:
    • обладает небольшой окалийностью;
    • высокая хрупкость сварных швов;
    • малая пластичность при низких температурах;
    • упрочнение нагартовкой можно использовать лишь до 700-800 °С, при более высоких температурах происходит разупрочнение из-за возврата.

    Химические свойства

    При комнатной температуре на воздухе молибден устойчив. Начинает окисляться при 400 °C. Выше 600 °C быстро окисляется до триоксида MoO3. Этот оксид получают также окислением дисульфида молибдена MoS2 и термолизом молибдата аммония (NH4)6Mo7O24·4H2O.

    Mo образует оксид молибдена (IV) MoO2 и ряд оксидов, промежуточных между MoO3 и MoO2.

    С галогенами Mo образует ряд соединений в разных степенях окисления. При взаимодействии порошка молибдена или MoO3 с F2 получают гексафторид молибдена MoF6, бесцветную легкокипящую жидкость. Mo (+4 и +5) образует твердые галогениды MoHal4 и MoHal5 (Hal = F, Cl, Br). С йодом известен только дийодид молибдена MoI2. Молибден образует оксигалогениды: MoOF4, MoOCl4, MoO2F2, MoO2Cl2, MoO2Br2, MoOBr3 и другие.

    При нагревании молибдена с серой образуется дисульфид молибдена MoS2, с селеном — диселенид молибдена состава MoSe2. Известны карбиды молибдена Mo2C и MoC — кристаллические высокоплавкие вещества и силицид молибдена MoSi2.

    Особая группа соединений молибдена — молибденовые сини. При действии восстановителей — сернистого газа, цинковой пыли, алюминия или других на слабокислые (pH=4) суспензии оксида молибдена образуются ярко-синие вещества переменного состава: Mo2O5·H2O, Mo4O11·H2O и Mo8O23·8H2O.

    Mo образует молибдаты, соли не выделенных в свободном состоянии слабых молибденовых кислот, xH2O· MoO3 (парамолибдат аммония 3(NH4)2O·7MoO3·zH2O; CaMoO4, Fe2(MoO4)3 — встречаются в природе). Молибдаты металлов I и III групп содержат тетраэдрические группировки [MoO4].

    При подкислении водных растворов нормальных молибдатов образуются ионы MoO3OH−, затем ионы полимолибдатов: гепта-, (пара-) Mo7O266−, тетра-(мета-) Mo4O132−, окта- Mo8O264− и другие. Безводные полимолибдаты синтезируют спеканием MoO3 с оксидами металлов.

    Существуют двойные молибдаты, в состав которых входят сразу два катиона, например, M+1M+3(MoO4)2, M+15M+3(MoO4)4. Оксидные соединения, содержащие молибден в низших степенях окисления — молибденовые бронзы, например, красная K0,26MoO3 и синяя K0,28MoO3. Эти соединения обладают металлической проводимостью и полупроводниковыми свойствами.

    Метаболизм

    Поступивший внутрь, он всасывается в желудке и в начальных отделах тонкого кишечника. В зависимости от пищевого источника всасываемость составляет 25-80%, но может приближаться к 100%. Поступивший в кровь микроэлемент частично присутствует в форменных элементах, а частично в плазме, в комплексе с плазменными белками альбуминами.

    Вместе с альбуминами он разносится по органам и тканям. Распределение его в организме неравномерное. Относительно много Мо в коже и костной ткани, а также во внутренних органах, главным образом в печени и в почках. Этими же органами, почками и печенью, он и выводится в составе мочи и желчи. При этом в организме он не накапливается.

    Применение

    Молибден используется для легирования сталей как компонент жаропрочных и коррозионностойких сплавов. Молибденовая проволока (лента) служит для изготовления высокотемпературных печей, вводов электрического тока в лампах накаливания. Соединения молибдена — сульфид, оксиды, молибдаты — являются катализаторами химических реакций, пигментами красителей, компонентами глазурей. Гексафторид молибдена применяется при нанесении металлического Mo на различные материалы, MoS2 используется как твёрдая высокотемпературная смазка. Mo входит в состав микроудобрений. Радиоактивные изотопы 93Mo (T

    1/2 = 6,95 ч) и 99Mo (
    T
    1/2 = 66 ч) — изотопные индикаторы.

    Молибден — один из немногих легирующих элементов, способных одновременно повысить прочностные, вязкие свойства стали и коррозионную стойкость. Обычно при легировании одновременно с увеличением твёрдости растёт и хрупкость металла. Известны случаи использования молибдена при изготовлении в Японии холодного оружия в XI—XIII веках.

    Молибден-99 используется для получения технеция-99, который используется в медицине при диагностике онкологических и некоторых других заболеваний. Общее мировое производство молибдена-99 составляет около 12 000 кюри в неделю (из расчёта активности на шестой день), стоимость молибдена-99 — 46 млн долларов за 1 грамм (470 долларов за 1 Ки).

    В 2005 году мировые поставки молибдена (в пересчёте на чистый молибден) составили, по данным «Sojitz Alloy Division», 172,2 тыс. тонн (в 2003 году — 144,2 тыс. тонн). Чистый монокристаллический молибден используется для производства зеркал для мощных газодинамических лазеров. Теллурид молибдена является очень хорошим термоэлектрическим материалом для производства термоэлектрогенераторов (термо-ЭДС 780 мкВ/К). Трёхокись молибдена (молибденовый ангидрид) широко применяется в качестве положительного электрода в литиевых источниках тока.

    Молибден применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов и теплоизоляции. Дисилицид молибдена применяется в качестве нагревателей в печах с окислительной атмосферой, работающих до 1800 °C.

    Из молибдена изготовляются крючки-держатели тела накала ламп накаливания, в том числе ламп накаливания общего назначения.

    Молибденовая проволока диаметром 0,05—0,2 мм используется в проволочных электроэрозионных станках для резки металлов с очень высокой точностью (до 0,01 мм), в том числе и заготовок большой толщины (до 500 мм). В отличие от медной и латунной проволоки, которые используются однократно в подобных станках, молибденовая — многоразовая (~300—500 метров хватает на 30—80 часов непрерывной работы), что несколько уменьшает точность обработки, но повышает её скорость и снижает её стоимость.

    Жаропрочные сплавы

    Техника сверхскоростных и космических полетов ставит перед металлургами задачу получать все более жаростойкие материалы. Прочность при высоких температурах зависит прежде всего от типа кристаллической решетки и, конечно, от химической природы материала. Температурный предел эксплуатации титановых сплавов 550— 600° С, молибденовых — 860, а титано-молибденовых — 1500° С!

    Чем объяснить столь значительный скачок? Его причина — в строении кристаллической решетки. В объемно-центрированную структуру молибдена внедряются посторонние атомы, на этот раз атомы титана. Получается так называемый твердый раствор внедрения, структуру которого можно представить так. Атомы молибдена, металла-основы, располагаются по углам куба, а атомы добавленного металла, титана,—в центрах этих кубов. Вместо объем-по-центрированной кристаллической решетки появляется гранецентрированная, в которой процессы разупрочнения под действием температур происходят намного менее ий-

    В таком целенаправленном изменении кристаллической структуры металлов состоит один из основных принципов легирования.

    Другая причина столь резкого увеличения жаропрочности кроется в том, что сплавляются очень непохожие металлы — молибден и титан. Это общее правило: чем больше разница между атомами легирующего металла и металла-основы, тем прочнее образующиеся связи. Металлическая связь как бы дополняется химической.

    Легирование, однако, вовсе не последнее слово в решении проблемы жаропрочных сплавов. Уже в наше время обнаружены необычайные свойства нитевидных кристаллов, или «усов». Прочность их по сравнению с металлами, обычно используемыми в технике, поразительно велика. Объясняется это тем, что кристаллическая структура усов практически лишена дефектов, и техника сверхскоростных полетов берет на вооружение усы, создавая с их помощью композиционные жаропрочные материалы. Один из таких материалов — это окись алюминия, армированная молибденовыми усами, другой представляет собой начиненный топ же арматурой технический титан. По сравнению с обычным титаном этот материал может работать в жестких условиях в 1000 раз дольше.

    Что можно противопоставить огненному смерчу, обрушивающемуся на космический корабль при входе в плотные слои атмосферы? Прежде всего теплозащитную обмазку и охлаждение. Да, охлаждение, подобное в принципе охлаждению автомобильных двигателей с помощью радиаторов. Только работать здесь должны более энергоемкие процессы. Много тепла нужно на испарение веществ, но еще больше на сублимацию — перевод из твердого состояния непосредственно в газообразное. При высоких температурах сублимировать способны молибден, вольфрам, золото. Покрытие носовой части корабля молибденом или другим из перечисленных (более дорогих) металлов в значительной мере ослабит силу огненного смерча, через который надо пройти возвращаемому аппарату космического корабля.

    Другие отрасли

    Львиную долю продукции из молибдена, сплавов металла забирают производители радио- и электрических ламп, радиоэлектроники.

    Материала хватает и на другие цели:

    • Пресс-формы, детали машин для литья сплавов под давлением.
    • Электровакуумное производство (рентгеновские трубки).
    • Положительный электрод источников тока на основе лития.
    • Оболочки деталей ядерных реакторов.
    • Нагреватели электропечей, функционирующих в жестких условиях.
    • Внешний слой «носового» сегмента корпуса сверхзвуковых самолетов.
    • Электроды для выплавки стекла.
    • Катализ химических реакций.
    • Лаки, краски для фарфора, текстиля, мехов.

    Эта продукция создается на основе природных соединений и сплавов металла.

    Новейшее направление применения молибдена – космическая техника.

    Ассортимент: узлы ракетных (ионных, плазменных) двигателей; обшивка спускаемых аппаратов; теплообменники. Здесь свойства молибдена корректируют сплавы с ниобием и танталом.

    Чистый кристаллический Mo используется как компонент зеркал для лазеров специального назначения.

    Микродозы металла добавляют в сельхозудобрения.

    Биологическая роль

    Физиологическое значение молибдена для организма животных и человека было впервые показано в 1953 году, с открытием влияния этого элемента на активность фермента ксантиноксидазы. Молибден промотирует (делает более эффективной) работу антиокислителей, в том числе витамина С. Важный компонент системы тканевого дыхания. Усиливает синтез аминокислот, улучшает накопление азота. Молибден входит в состав ряда ферментов (альдегидоксидаза, сульфитоксидаза, ксантиноксидаза и др.), выполняющих важные физиологические функции, в частности, регуляцию обмена мочевой кислоты. Молибденоэнзимы катализируют гидроксилирование различных субстратов. Альдегидоксидаза окисляет и нейтрализует различные пиримидины, пурины, птеридины. Ксантиноксидаза катализирует преобразование гипоксантинов в ксантины, а ксантины — в мочевую кислоту. Сульфитоксидаза катализирует преобразование сульфита в сульфат.

    Недостаток молибдена в организме сопровождается уменьшением содержания в тканях ксантиноксидазы. При недостатке молибдена страдают анаболические процессы, наблюдается ослабление иммунной системы. Тиомолибдат аммония (растворимая соль молибдена), является антагонистом меди и нарушает её утилизацию в организме.

    Круговорот азота

    Молибден входит в состав активного центра нитрогеназы — фермента для связывания атмосферного азота (распространён у бактерий и архей).

    Микроэлемент

    Микроколичества молибдена необходимы для нормального развития организмов, используется в составе микроэлементной подкормки, в частности, под ягодные культуры.

    Влияет на размножение (у растений).

    Источники поступления

    В течение суток при сбалансированном питании взрослый человек получает от 75 до 250 мкг Мо. Это количество в целом покрывает суточную потребность в микроэлементе.

    Больше всего содержится в белковой пище. Это не только мясо, но и рыба, но и мясные субпродукты (печень, сердце, почки, мозг). Растительные белки, включенные в состав зерновых, бобовых, тоже содержат его большое количество.

    Содержание Мо в 100 г пищевых продуктов:

    ПродуктСодержание, мкг/100 г
    Говядина10
    Говяжья печень110
    Говяжьи почки87
    Говяжье сердце, мозги18
    Свинина12
    Свиная печень81
    Свиные почки43
    Свиное сердце19
    Курица16
    Печень куриная55
    Яйца куриные41
    Индейка28
    Соя95
    Горох83
    Чечевица76
    Фасоль39
    Какао бобы41
    Овсяная крупа38
    Гречиха35
    Рис25
    Пшеница зерновая42
    Молоко35
    Треска13
    Ставрида26
    Кальмары20
    Шпроты в масле11
    Макаронные изделия11
    Черная смородина24
    Малина14
    Крыжовник11
    Зеленый лук19

    Он теряется при длительной варке пищи. То же самое касается замораживания мяса, субпродуктов и рыбы.

    Меры предосторожности

    Что касается возможных лекарственных взаимодействий, было обнаружено, что высокие дозы ингибируют метаболизм ацетаинофена у крыс, поэтому не рекомендуется принимать ацетаминофен вместе с этим элементом (4).

    Люди, которые испытывают дефицит меди в рационе или имеют нарушения метаболизма меди, которые приводят к их дефициту меди, могут подвергаться повышенному риску развития токсичности молибдена.

    Вы не должны принимать добавки этого микроэлемента, если у вас есть камни в желчном пузыре или проблемы с почками.

    Если вы беременны или кормите грудью, имеете заболевание или в настоящее время принимаете лекарства, всегда говорите с вашим врачом, прежде чем принимать какие-либо новые добавки.

    Заключительные мысли

    • Молибден для организма необходим, чтобы включать расщепление макроэлементов, фермент-зависимые процессы, метаболизм железа и детоксикацию от вредных веществ.
    • Преимущества молибдена могут включать предотвращение или улучшение некоторых проблем со здоровьем, но до настоящего времени было проведено ограниченное количество исследований, чтобы однозначно подтвердить потребность в добавках, особенно когда дефицит встречается так редко.
    • Одним из примеров состояния, которому он может помочь, является рак пищевода, поскольку исследования показали, что его дефицит может играть роль в более высокой частоте возникновения рака пищевода в популяциях, потребляющих пищу, выращенную в почве с низким содержанием этого минерала.
    • Здоровые продукты, которые содержат этот элемент, включают чечевицу, сушеный горох, черную фасоль, овес и салат ромэн.
    • Лучше и безопаснее всего получать этот микроэлемент с помощью диеты, особенно потому, что дефицит встречается крайне редко.
    • Избыточное количество этого микроэлемента с помощью добавок (или промышленного воздействия) может вызвать подагру и / или дефицит меди.
    Рейтинг
    ( 2 оценки, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]
    Для любых предложений по сайту: [email protected]