Химический элемент олово (Sn) — свойства, получение и применение металла

ОЛОВО, Sn (от лат. stannum, что первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67% Sn; к 4 в. этим словом стали называть олово), химический элемент IVB подгруппы (включающей C, Si, Ge, Sn и Pb) периодической системы элементов. Олово – относительно мягкий металл, используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами.
Также по теме:

МИНЕРАЛЬНЫЕ РЕСУРСЫ

Главные промышленные применения олова – в белой жести (луженое железо) для изготовления тары, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Олово образует различные соединения, многие из которых находят промышленное применение. Наиболее экономически важный оловосодержащий минерал – касситерит (оксид олова). Мировые месторождения касситерита разрабатывают в Юго-Восточной Азии, в основном в Индонезии, Малайзии и Таиланде. Другие важные месторождения касситерита находятся в Южной Америке (Бразилия и Боливия), Китае и Австралии. См. также ОЛОВА ПРОИЗВОДСТВО.

Историческая справка.

Олово начали применять, вероятно, еще во времена Гомера и Моисея. Открытие его было связано, скорее всего, со случайным восстановлением наносного касситерита (оловянного камня); наносные отложения встречаются на поверхности или близко к ней, и оловянные руды намного легче восстанавливаются, чем руды других металлов. Древние бритты были хорошо знакомы с оловом: в Корнуолле на юго-западе Англии были обнаружены древние горны со шлаком. Металл был, очевидно, малодоступен и дорог, т.к. оловянные предметы редко встречаются среди римских и греческих древностей, хотя об олове говорится в Библии в Четвертой книге Моисеевой (Числа), а слово касситерит, которое и сегодня используется для обозначения оксидной оловянной руды, – греческого происхождения. Малакка и Восточная Индия упоминаются как источники олова в арабской литературе 8–9 вв. и различными авторами в 16 в. в связи с Великими географическими открытиями. История оловянных разработок в Саксонии и Богемии относится еще к 12 в., но в 17 в. 30-летняя война (1618–1648) разрушила эту промышленность. Производство впоследствии возобновили, но вскоре оно пришло в упадок из-за открытия богатых месторождений в Америке.

Этапы производства

При получении олова рудная порода касситерит дробится в мельницах до появления частиц размером около 1 см. Следующий этап — отделение вещества от пустой породы путем вибрации на гравитационных столах. Затем используется метод очистки и обогащения руды для повышения олова в составе до 45−72%.

Последующий обжиг удаляет мышьяк и серу, а полученный концентрат поступает на обжиг в печи. В жерле древесный уголь укладывается вперемежку с образцами руды и алюминием. Чистый металл полупроводниковой чистоты получают способом расплавления твердых веществ или методом очистки под действием электролиза.

Основные месторождения находятся на юго-востоке Азии и Китае, крупные добычи находятся в Австралии и Америке. Россия славится залежами олова в Хабаровском и Приморском крае, Чукотском АО, Якутии и других регионах.

Бронза.

Задолго до того как научились добывать олово в чистом виде, был известен сплав олова с медью – бронза, который получали, видимо, уже в 2500–2000 до н.э. Олово в рудах часто встречается вместе с медью, так что при плавке меди в Британии, Богемии, Китае и на юге Испании образовывалась не чистая медь, а ее сплав с некоторым количеством олова. Ранние медные плотничные инструменты (долото, тесло и др.) из Ирландии содержали до 1% Sn. В Египте медная утварь 12-й династии (2000 до н.э.) содержала до 2% Sn, по-видимому, как случайную примесь. Первобытная практика выплавки меди основывалась на использовании смеси медных и оловянных руд, в результате чего и получалась бронза, содержащая до 22% Sn.
Таблица: Свойства b -ОЛОВА

СВОЙСТВА b -ОЛОВА
Атомный номер50
Атомная масса118,710
Изотопы
стабильные112, 114–120, 122, 124
нестабильные108–111, 113, 121, 123, 125–127
Температура плавления, °С231,9
Температура кипения, °С2625
Плотность, г/см37,29
Твердость (по Бринеллю)3,9
Содержание в земной коре, % (масс.)0,0004
Степени окисления+2, +4

Содержание

  • 1 История
  • 2 Происхождение названия
  • 3 Нахождение в природе
  • 3.1 Месторождения
  • 3.2 Распространённость в природе
  • 3.3 Формы нахождения
  • 3.3.1 Твёрдая фаза. Минералы
  • 3.3.2 Собственно минеральные формы
  • 3.3.2.1 Самородные элементы, сплавы и интерметаллические соединения
  • 3.3.2.2 Окисные соединения олова
  • 3.3.2.3 Сульфидные соединения олова
  • 3.3.3 Коллоидная форма
  • 3.3.4 Формы нахождения олова в жидкой фазе
  • 3.4 Промышленные типы месторождений олова
  • 4 Производство
  • 5 Физические свойства
  • 6 Оловянная чума
  • 7 Применение
  • 8 Изотопы
  • 9 Физиологическое действие

Физические свойства.

Олово – мягкий серебристо-белый пластичный металл (может быть прокатан в очень тонкую фольгу – станиоль) с невысокой температурой плавления (легко выплавляется из руд), но высокой температурой кипения. Олово имеет две аллотропные модификации: a-Sn (серое олово) с гранецентрированной кубической кристаллической решеткой и b-Sn (обычное белое олово) с объемноцентрированной тетрагональной кристаллической решеткой. Фазовый переход b ® a ускоряется при низких температурах (–30° С) и в присутствии зародышей кристаллов серого олова; известны случаи, когда оловянные изделия на морозе рассыпались в серый порошок («оловянная чума»), но это превращение даже при очень низких температурах резко тормозится наличием мельчайших примесей и поэтому редко встречается, представляя скорее научный, чем практический интерес. См. также АЛЛОТРОПИЯ; ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ; ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ.

Чистое олово обладает низкой механической прочностью при комнатной температуре (можно согнуть оловянную палочку, при этом слышится характерный треск, обусловленный трением отдельных кристаллов друг о друга) и поэтому редко используется. Однако оно легко образует сплавы с большинством других черных и цветных металлов. Оловосодержащие сплавы обладают прекрасными антифрикционными свойствами в присутствии смазки, поэтому широко используются как материал подшипников.

Где найти ядра суртлинга

Такие материалы как дерево и камень легко найти. При этом достать ядра суртлинга непросто.

10 штук понадобится для строительства угольной печи и плавильни — двух ключевых строений, необходимых для изготовления металлов. Чтобы отыскать ядра суртлингов, нужно найти погребальные комнаты.

Вокруг входов в подземелья стоят охраняемые скелетами небольшие каменные конструкции, встречающиеся в Черном Лесу. Перед входом нужно создать факел, чтобы освещать путь в склепах. Понадобится 1 дерево и 1 смола.

В погребальных комнатах есть несколько извилистых коридоров, деревянные двери и скелеты. Потребуется осмотреть камеры и отыскать 10 ядер суртлинга (похожи на светящиеся кубы).

Изделия из олова достаточно требовательны – они нуждаются в регулярном уходе. В идеале их следует очищать сразу после использования, чтобы остатки пищи не слишком долго в них находились.

Удалить грязь можно теплой водой и мягкой губкой с нанесенным на нее средством для мытья посуды. После чистки приборы нужно сполоснуть чистой водой и поставить сушиться на расстеленное полотенце или сушилку.

Использовать для чистки таких изделий посудомоечную машину нельзя. Также не следует пользоваться жесткими губками или абразивными моющими средствами – они могут поцарапать поверхность приборов.

Современную, не покрытую патиной потемневшую посуду из олова можно чистить полиролью, предназначенной для серебряных или латунных изделий. Подойдут и некоторые мягко действующие абразивные составы («Блеск-500» или аналоги). Их наносят на мягкую тряпочку и удаляют потемнения или следы коррозии.

Химические свойства.

При комнатной температуре олово химически инертно к кислороду и воде. На воздухе олово постепенно покрывается защитной оксидной пленкой, которая повышает его коррозионную стойкость. С химической инертностью олова и его оксидной пленки в обычных условиях связано использование его в покрытии жестяной тары для продуктов питания, прежде всего – консервных банок. Олово легко наносится на сталь и продукты его коррозии безвредны. В соединениях олово проявляет две степени окисления: +2 и +4, причем соединения олова(II) в большинстве своем относительно нестабильны в разбавленных водных растворах и окисляются до соединений олова(IV) (их используют иногда как восстановители, например SnCl2). Разбавленные соляная и серная кислоты действуют на олово очень медленно, а концентрированные, особенно при нагревании, растворяют его, причем в соляной кислоте получается хлорид олова(II), а в серной – сульфат олова(IV). С азотной кислотой олово реагирует тем интенсивнее, чем выше концентрация и температура: в разбавленной HNO3 образуется растворимый нитрат олова(II), а в концентрированной HNO3 – нерастворимая b-оловянная кислота H2SnO3. Концентрированные щелочи растворяют олово с образованием станнитов – солей оловянистой кислоты H2SnO2; в растворах станниты существуют в гидроксоформе, например Na2[Sn(OH)4]. Наибольшее промышленное значение соединения олова(II) имеют в производстве гальванических покрытий. Соединения олова(IV) находят обширное промышленное применение.

Оксиды олова амфотерны, проявляют и кислотные, и основные свойства. Оксид олова(IV) встречается в природе в виде минерала касситерита, а чистый SnO2 получают из чистого металла; диоксид олова SnO2 применяется для приготовления белых глазурей и эмалей. Из SnO2 при взаимодействии со щелочами получают станнаты – соли оловянной кислоты, наиболее важные из которых – станнаты калия и натрия; растворы станнатов находят широкое применение как электролиты для осаждения олова и его сплавов. SnCl4 – тетрахлорид олова, исходное соединение для многих синтезов других соединений олова, включая и оловоорганические.

Нахождение в природе

Олово — редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2·10−4 до 8·10−3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn).

Месторождения

Мировые месторождения олова находятся в основном в Китае и Юго-Восточной Азии — Индонезии, Малайзии и Таиланде. Также есть крупные месторождения в Южной Америке (Боливии, Перу, Бразилии) и Австралии.

В России запасы оловянных руд расположены в Чукотском автономном округе (Пыркакайские штокверки; рудник/посёлок Валькумей, Иультин — разработка месторождений закрыта в начале 1990-х годов), в Приморском крае (Кавалеровский район), в Хабаровском крае (Солнечный район, Верхнебуреинский район (Правоурмийское месторождение)), в Якутии (месторождение Депутатское) и других районах.

Распространённость в природе

Распространённость в природе отражена в следующей таблице:

Геол. объект Камен. метеориты Дуниты и др. Базальты и др. Диориты и др. Гранитоиды Глины и др. Вода океанов Живое вещество(% на живой вес) Почва Зола растений
Содержание, вес. % 1·10−4 5·10−5 1,5·10−4 3·10−4 1·10−3 7·10−7 5·10−5 1·10−3 5·10−4

В незагрязнённых поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограмм на дм³, увеличиваясь в районе оловорудных месторождений, оно попадает в воды за счёт разрушения в первую очередь сульфидных минералов, неустойчивых в зоне окисления. ПДКSn = 2 мг/дм³.

Кристаллы касситерита — оловянная руда

Олово является амфотерным элементом, то есть элементом, способным проявлять кислотные и основные свойства. Это свойство олова определяет и особенности его распространения в природе. Благодаря этой двойственности олово проявляет литофильные, халькофильные и сидерофильные свойства. Олово по своим свойствам проявляет близость к кварцу, вследствие чего известна тесная связь олова в виде окиси (касситерита) с кислыми гранитоидами (литофильность), часто обогащёнными оловом, вплоть до образования самостоятельных кварц-касситеритовых жил. Щелочной характер поведения олова определяется в образовании довольно разнообразных сульфидных соединений (халькофильность), вплоть до образования самородного олова и различных интерметаллических соединений, известных в ультраосновных породах (сидерофильность).

Формы нахождения

Основная форма нахождения олова в горных породах и минералах — рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO2) и сульфидной (станнин) формах.

Твёрдая фаза. Минералы

Кристаллы касситерита

В общем можно выделить следующие формы нахождения олова в природе:

  1. Рассеянная форма; конкретная форма нахождения олова в этом виде неизвестна. Здесь можно говорить об изоморфно рассеянной форме нахождения олова вследствие наличия изоморфизма с рядом элементов (Ta, Nb, W — с образованием типично кислородных соединений; V, Cr, Ti, Mn, Sc — с образованием кислородных и сульфидных соединений). Если концентрации олова не превышают некоторых критических значений, то оно изоморфно может замещать названные элементы. Механизмы изоморфизма различны.
  2. Минеральная форма: олово установлено в минералах-концентраторах. Как правило, это минералы, в которых присутствует железо Fe+2: биотиты, гранаты, пироксены, магнетиты, турмалины и т. д. Эта связь обусловлена изоморфизмом, например, по схеме Sn+4 + Fe+2 → 2Fe+3. В оловоносных скарнах высокие концентрации олова установлены в гранатах (до 5,8 вес.%) (особенно в андрадитах), эпидотах (до 2,84 вес.%) и т. д.

На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Россия, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротине грейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu2+1Fe+2SnS4 или тиллита PbSnS2 и других минералов.

Собственно минеральные формы

Самородные элементы, сплавы и интерметаллические соединения

Хотя концентрации этих минералов в породах очень низки, однако распространены они в широком круге генетических образований. Среди самородных форм вместе с Sn выявлены Fe, Al, Cu, Ti, Cd и т. д., не считая уже известные самородные платиноиды, золото и серебро. Эти же элементы образуют между собой и различные сплавы: (Cu + Sn + Sb), (Pb + Sn + Sb) и др., а также твёрдые растворы. Среди интерметаллических соединений установлены стистаит SnSb, атакит (Pd,Pt)3Sn, штумырлит Pt(Sn,Bi), звягинцевит (Pd,Pt)3(Pb,Sn), таймырит (Pd,Cu,Pt)3Sn и другие.

Приведённые формы нахождения олова и других элементов встречаются в различных геологических образованиях:

  1. Группа интрузивных и эффузивных магматических пород: траппы, пикриты Сибирской платформы, гипербазиты и габброиды Камчатки, кимберлиты Якутии, лампроиты Алдана и т. д.; гранитоиды Приморья, Дальнего Востока, Тянь-Шаня.
  2. Группа метасоматически и гидротермально изменённых пород: медно-никелевые руды Сибирской платформы, золоторудные объекты Урала, Кавказа, Узбекистана и т. д.[9]
  3. Группа современного рудообразования: пелагические осадки Тихого океана, продукты Большого Трещинного Толбачинского извержения, гидротермальная система Узон на Камчатке и пр.
  4. Группа осадочных пород различного происхождения.
Окисные соединения олова

Наиболее известной формой является главный минерал олова — касситерит SnO2, представляющий собой соединение олова с кислородом. В минерале по данным ядерной гамма-резонансной спектроскопии присутствует Sn+4.

Касситерит

Основная статья: Касситерит

Касситерит (от греч. kassiteros — олово) — главный рудный минерал для получения олова. Теоретически содержит 78,62 % Sn. Образует отдельные выделения, зерна, сплошные массивные агрегаты, в которых зерна минерала достигают в размере 3 — 4 мм и даже больше.

  • Плотность 6040-7120 кг/м³ (наиболее низкая у светлоокрашенных касситеритов).
  • Твердость 6½.
  • Блеск — матовый, на гранях — алмазный.
  • Спайность несовершенная.
  • Излом раковистый.

Основные формы выделения касситерита:

  1. микровключения в других минералах;
  2. акцессорные выделения минерала в породах и рудах;
  3. сплошные или вкрапленные руды: игольчатые радиально-лучистые агрегаты (Приморье), коломорфные и криптокристаллические выделения и скопления (Приморье); кристаллическая форма — главная форма выделения касситерита. В России месторождения касситерита имеются на Северо-Востоке, в Приморье, Якутии, Забайкалье; за рубежом — в Малайзии, Таиланде, Индонезии, КНР, Боливии, Нигерии и др.

Гидроокисные соединения

Второстепенное место занимают гидроокисные соединения олова, которые можно рассматривать как соли полиоловянных кислот. К ним можно отнести минерал сукулаит Ta2Sn2+2O; твёрдый раствор олова в магнетите вида Fe2SnO4 или Fe3SnO3 (Бретштейн Ю. С., 1974;Воронина Л. Б. 1979); «варламовит» — продукт окисления станнина; считается, что он представляет собой смесь аморфных и полуаморфных соединений Sn, метаоловянной кислоты, поликонденсированной фазы и гидрокасситеритовой фазы. Известны также гидратированные продукты окисления — гидромартит 3SnOxH2O; мушистонит (Cu,Zn,Fe)Sn(OH)6; гидростаннат меди CuSn(OH)6 и др.

Силикаты

Известна многочисленная группа силикатов олова, представленная малаяитом CaSn[SiO5]; пабститом Ba(Sn, Ti)Si3O9, стоказитом Ca2Sn2Si6O18x4H2O и др. Малаяит образует даже промышленные скопления.

Шпинелиды

Из других окисных соединений известны также шпинелиды, например, минерал нигерит Sn2Fe4Al16О32 (Peterson E.U., 1986).

Сульфидные соединения олова

Включает различные соединения олова с серой. Это вторая по промышленному значению группа минеральных форм нахождения олова. Наиболее важным из них является станнин, второй по значению минерал. Кроме этого, отмечаются франкеит Pb5Sn3Sb2S14, герценбергит SnS, берндтит SnS2, тиллит PbSnS2 и кестерит Cu2ZnSnS4. Выявлены и более сложные сульфидные соединения олова со свинцом, серебром, медью, имеющие в основном минералогическое значение. Тесная связь олова с медью обусловливает частое присутствие на оловорудных месторождения халькопирита CuFeS2 с образованием парагенезиса касситерит — халькопирит.

Станнин

Основная статья: Станнин

Станнин (от лат. stannum — олово), оловянный колчедан, минерал из класса сульфидов с общей формулой вида Cu2FeSnS4. Она следует из формулы халькопирита путём замены одного атома Fe на Sn. Содержит 29,58 % Cu, 12,99 % Fe, 27,5 % Sn и 29,8 S, а также примеси Zn, Sb, Cd, Pb и Ag. Широко распространённый минерал в оловорудных месторождениях России. На ряде месторождений России (Приморье, Якутия) и Средней Азии (Таджикистан) он является существенным элементов сульфидных минералов и часто вместе с варламовитом составляет 10—40 % общего олова. Часто образует вкрапленность в сфалерите ZnS, халькопирите. Во многих случаях наблюдаются явления распада станнина с выделением касситерита.

Коллоидная форма

Коллоидные и олово-кремнистые соединения играют значительную роль в геохимии олова, хотя детально она не изучена. Значительное место в геологии элемента играют коломорфные соединения и продукты его кристаллических превращений в скрытокристаллические разности. Коломорфный касситерит рассматривается как форма выражения вязких гелеобразных растворов.

Независимые исследования выявили аномально высокую растворимость SnO2 в хлор-кремниевых растворах. Максимальная растворимость достигается при отношении .

Анализ свойств соединения Sn(OH)4 и близость их к соединению Si(OH)4 выявляет способность его к полимеризации с образованием в конечном счёте соединений H2SnkO2k+1, SnkO2k−1(OH)2. В обоих случаях возможно замещение группы (ОН) на анионы F и Cl.

Таким образом, полимеризация молекул Sn(OH)4 и соединение их с молекулами Si(OH)4 ведёт к образованию геля (коллоида) и появлению цепочек HmSn2nSinOp, причём m ≤ 8, или Hs[SiO2n(SnOm)d] (Некрасов И. Я. и др., 1973).

Имеющиеся данные говорят о том, что коллоидная форма является естественным промежуточным звеном при осаждении олова из гидротермальных растворов.

Формы нахождения олова в жидкой фазе

Наименее изученная часть геохимии олова, хотя в газово-жидких включениях установлены касситериты в виде минералов-узников (Кокорин А. М. и др., 1975). Работ по анализу конкретных оловосодержащих природных растворов нет. В основном вся информация основана на результатах экспериментальных исследований, которые говорят только о вероятных формах нахождения олова в растворах. Существенную роль в разработке методики этих исследований принадлежит академику В. Л. Барсукову

Вся совокупность экспериментально установленных форм нахождения олова в растворах разбивается на группы:

  1. Ионные соединения. Эти соединения и их структура описываются с позиций классических валентных и стереохимических представлений. Выделяются подгруппы: Простые ионы Sn+2 и Sn+4 в основном обнаружены в магматических расплавах, а также в гидротермальных растворах, обладающих низкими значениями рН. Однако в существующих гидротермальных системах, отражаемых составом газово-жидких включений, такие условия не установлены.
  2. Соли галлоидных кислот — SnF2, SnF40, SnCl40. Считается, что роль хлора в переносе и отложении олова и сопутствующих металлов более значительна, чем роль фтора.
  3. Гидроксильные соединения олова. В щелочных условиях исходными являются соединения H2SnO2, H2SnO4, H2SnO3. Эти формы часто устанавливаются на основе известных минеральных форм. Часть этих форм имеет как искусственное (CaSnO3, Ca2SnO4), так и природное (FeSnO2, Fe2SnO4) происхождение. В кислых средах эти соединения ведут себя как слабые основания типа Sn(OH)2, Sn(OH)4. Считается, что одной из форм проявления подобных соединений является варламовит. Согласно экспериментальным данным Sn(OH)4 отлагается только при Т< 280 °C в слабокислых или нейтральных условиях при рН = 7 — 9. Соединения Sn(OH)4 и Sn(OH)3+ устойчивы при рН= 7 — 9, тогда как Sn(OH)2+2 и Sn(OH)+2 — при рН < 7. Довольно часто группы (ОН)−1 замещаются на F и Cl, создавая галогенозамещённые модификации гидросоединений олова. В общем виде эти формы представлены соединениями Sn(OH)4-kFk или Sn(OH)4-kFk-nn. В целом соединение Sn(OH)3F устойчиво при Т = 25—50 °C, а Sn(OH)2F² при Т = 200 °C.
  4. Сульфидные соединения. По экспериментальным данным в растворе присутствуют соединения SnS4−4 или SnS3−2 при рН > 9; SnS2O−2 (pH = 8 — 9) и Sn(SH)4 (pH = 6). Имеется упоминание о существовании соединения типа Na2SnS3, неустойчивого в кислой среде.
  • Комплексные соединения олова изучены при растворении касситерита во фторированных средах. Эти соединения отличаются высокой растворимостью. Этими же свойствами обладают соединения, полученные в хлоридных растворах. В качестве основных форм комплексных соединений, известных из экспериментов, можно назвать Na2[Sn(OH)6], Na2[SnF6], Na2[Sn(OH)2F4] и пр. Эксперименты показали, что комплекс Sn(OH)4F2−2 будет преобладать при Т = 200 °C.
  • Коллоидные и олово-кремнистые соединения. Об их существовании говорит присутствие на многих месторождениях коломорфных выделений касситерита. Смотреть выше.
  • Промышленные типы месторождений олова

    Описанные выше геохимические особенности олова находят косвенное отражение в формационной классификации оловорудных месторождений, предложенной Е. А. Радкевич с последующими дополнениями.

    А. Формация оловоносных гранитов. Касситерит установлен в акцессорной части гранитов.

    Б. Формация редкометальных гранитов. Это граниты литионит-амазонит-альбитового типа (апограниты по А. А. Беусу). Касситерит в акцессорной части вместе колумбит-татнатлитом, микролитом и пр.

    В. Формация оловоносных пегматитов. Оловянная минерализация характерна для Be-Li-, Be-Ta-, F-Li- типов.

    Г. Формация полевошпат-кварц-касситеритовая. Выделена Ив. Ф. Григорьевым. Это кварц-полевошпатовые жилы с касситеритом и др. минералами.

    Д.Формация кварц-касситеритовая. Распространена на СВ России. Это жильные зоны, грейзены с кварцем, мусковитом, вольфрамитом, касситеритом и др.

    Е.Формация касситерит-силикатно-сульфидная с турмалиновым и хлоритовым типами. Одна из основных продуктивных формаций Приморья России.

    Ж.Формация касситерит-сульфидная. Также основная оловопродуктивная формация. В ней выделяют основные типы:

    1. штокверковое олово-вольфрамовое оруденение;
    2. рудные тела квар-касситерит-арсенопиритового типа;
    3. продуктивные кварцевые жилы сульфидно-касситерит-хлоритового типа;

    З.Формация оловянно-скарновая.

    И.Формация деревянистого олова (риолитовая формация).

    К.Формация основных и ультраосновных пород (по И. Я. Некрасову)

    Л.Формация щелочных пород Украины(по В. С. Металлиди, 1988).

    Сплавы.

    Одна треть олова идет на изготовление припоев. Припои – это сплавы олова в основном со свинцом в разных пропорциях в зависимости от назначения. Сплав, содержащий 62% Sn и 38% Pb, называется эвтектическим и имеет самую низкую температуру плавления среди сплавов системы Sn – Pb. Он входит в составы, используемые в электронике и электротехнике. Другие свинцово-оловянные сплавы, например 30% Sn + 70% Pb, имеющие широкую область затвердевания, используются для пайки трубопроводов и как присадочный материал. Применяются и оловянные припои без свинца. Сплавы олова с сурьмой и медью используются как антифрикционные сплавы (баббиты, бронзы) в технологии подшипников для различных механизмов. Современные оловянно-свинцовые сплавы содержат 90–97% Sn и небольшие добавки меди и сурьмы для увеличения твердости и прочности. В отличие от ранних и средневековых свинецсодержащих сплавов, современная посуда из cплавов олова безопасна для использования.

    Изотопы

    Основная статья: Изотопы олова

    Природное олово состоит из десяти стабильных нуклидов с массовыми числами 112 (в смеси 0,96 % по массе), 114 (0,66 %), 115 (0,35 %), 116 (14,30 %), 117 (7,61 %), 118 (24,03 %), 119 (8,58 %), 120 (32,85 %), 122 (4,72 %) и 124 (5,94 %). Для некоторых из них энергетически возможен двойной бета-распад, однако экспериментально он пока (2014 г.) не наблюдался, поскольку предсказываемый период полураспада очень велик (более 1020 лет).

    Олово обладает наибольшим среди всех элементов числом стабильных изотопов, что связано с тем, что 50 (число протонов в ядрах олова) является магическим числом — оно составляет заполненную протонную оболочку в ядре и повышает, тем самым, энергию связи и стабильность ядра. Известны два дважды магических изотопа олова, оба они радиоактивны, так как удалены от полосы бета-стабильности: нейтронодефицитное 100Sn (Z = N = 50) и нейтроноизбыточное 132Sn (Z = 50, N = 82).

    Изотопы олова 117Sn и 119Sn являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.

    Покрытия из олова и его сплавов.

    Олово легко образует сплавы со многими металлами. Оловянные покрытия имеют хорошее сцепление с основой, обеспечивают хорошую коррозионную защиту и красивый внешний вид. Оловянные и оловянно-свинцовые покрытия можно наносить, погружая специально приготовленный предмет в ванну с расплавом, однако большинство оловянных покрытий и сплавов олова со свинцом, медью, никелем, цинком и кобальтом осаждают электролитически из водных растворов. Наличие большого диапазона составов для покрытий из олова и его сплавов позволяет решать многообразные задачи промышленного и декоративного характера.

    Происхождение названия

    Латинское название stannum, связанное с санскритским словом, означающим «стойкий, прочный», первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67 % олова; к IV веку этим словом стали называть собственно олово.

    Слово олово — общеславянское, имеющее соответствия в балтийских языках (ср. лит. alavas, alvas — «олово», прусск. alwis — «свинец»). Оно является суффиксальным образованием от корня ol- (ср. древневерхненемецкое elo — «жёлтый», лат. albus — «белый» и пр.), так что металл назван по цвету.

    Соединения.

    Олово образует различные химические соединения, многие из которых находят важное промышленное применение. Кроме многочисленных неорганических соединений, атом олова способен к образованию химической связи с углеродом, что позволяет получать металлоорганические соединения, известные как оловоорганические (см. также МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ). Водные растворы хлоридов, сульфатов и фтороборатов олова служат электролитами для осаждения олова и его сплавов. Оксид олова применяют в составе глазури для керамики; он придает глазури непрозрачность и служит красящим пигментом. Оксид олова можно также осаждать из растворов в виде тонкой пленки на различных изделиях, что придает прочность стеклянным изделиям (или уменьшает вес сосудов, сохраняя их прочность). Введение станната цинка и других производных олова в пластические и синтетические материалы уменьшает их возгораемость и препятствует образованию токсичного дыма, и эта область применения становится важнейшей для соединений олова. Огромное количество оловоорганических соединений расходуется в качестве стабилизаторов поливинилхлорида – вещества, используемого для изготовления тары, трубопроводов, прозрачного кровельного материала, оконных рам, водостоков и др. Другие оловоорганические соединения используются как сельскохозяйственные химикаты, для изготовления красок и консервации древесины.

    Физиологическое действие

    О роли олова в живых организмах практически ничего не известно. В теле человека содержится примерно (1—2)· 10−4 % олова, а его ежедневное поступление с пищей составляет 0,2—3,5 мг. Металлическое олово не токсично, что позволяет применять его в пищевой промышленности. Олово представляет опасность для человека в виде паров и различных аэрозольных частиц, пыли. При воздействии паров или пыли олова может развиться станноз — поражение легких. Станнан (оловянистый водород) — сильнейший яд. Также очень токсичны некоторые оловоорганические соединения. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м3, ПДК олова в пищевых продуктах 200 мг/кг, в молочных продуктах и соках — 100 мг/кг. Токсическая доза олова для человека — 2 г.

    Вредные примеси, содержащиеся в олове в обычных условиях хранения и применения, в том числе в расплаве при температуре до 600 °C, не выделяются в воздух рабочей зоны в объёмах, превышающих предельно допустимую концентрацию в соответствии с ГОСТ. Длительное (в течение 15—20 лет) воздействие пыли олова оказывает фиброгенное воздействие на лёгкие и может вызвать заболевание работающих пневмокониозом.

    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]
    Для любых предложений по сайту: [email protected]