Олово, свойства атома, химические и физические свойства


Олово представляет собой мягкий металл серебристо-белого цвета. Оно настолько ковкое и податливое, что его листы толщиной в тысячную долю миллиметра можно свернуть в трубочку. Такой материал называется оловянная бумага. В периодической таблице элементов Д. И. Менделеева этому элементу соответствует номер 50, атомный вес 118,69 и знак «Sn» (с лат. станнум). Известно 10 его стабильных изотопов. Получают металл в основном из минерала касситерита, представляющего собой диоксид олова.

В основном металл в сплаве со свинцом используется для пайки. Кроме того, его используют в качестве антикоррозионного покрытия для пищевых стальных тар, поскольку оно является нетоксичным. Композиты в составе с оловом используются в качестве фунгицидов, красок, зубной пасты (SnF2) и керамики.

История открытия и изучения олова

По археологическим находкам ученые смогли установить, что с оловом человечество познакомилось еще в 4 тысячелетии до н. э. Письменные напоминания об этом металле можно встретить в Четвертой Книге Моисея, Библии.

Сначала олово было малодоступным. Его можно было встретить только у правителей, полководцев, богатых граждан, купцов. Он был главным компонентом оловянистой бронзы, которая появилась в середине 3 тысячелетия до н. э. Тогда бронза считалась самым прочным сплавом. Компоненты для его изготовления имели исключительную ценность в период «бронзового века».

Отдельно от примесей, чистый металл было получено в 12 веке. Его упоминания есть в работах Р. Бэкона.

Распространённость олова в природе

Распространённость олова в природе отражена в следующей таблице:

Геол. объектКамен. метеоритыДуниты и др.Базальты и др.Диориты и др.ГранитоидыГлины и др.Вода океановЖивое вещество(% на живой вес)ПочваЗола растений
Содержание, вес. %001⋅10−405⋅10−501,5⋅10−40000−0003⋅10−41⋅10−307⋅10−700005⋅10−51⋅10−3005⋅10−4

В незагрязнённых поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограмм на литр, увеличиваясь в районе оловорудных месторождений, оно попадает в воды за счёт разрушения в первую очередь сульфидных минералов, неустойчивых в зоне окисления. ПДКSn = 2 мг/дм³.

Олово является амфотерным элементом, то есть элементом, способным проявлять кислотные и основные свойства. Это свойство олова определяет и особенности его распространения в природе. Благодаря этой двойственности олово проявляет литофильные, халькофильные и сидерофильные свойства. Олово по своим свойствам проявляет близость к кварцу, вследствие чего известна тесная связь олова в виде окиси (касситерита) с кислыми гранитоидами (литофильность), часто обогащёнными оловом, вплоть до образования самостоятельных кварц-касситеритовых жил. Щелочной характер поведения олова определяется в образовании довольно разнообразных сульфидных соединений (халькофильность), вплоть до образования самородного олова и различных интерметаллических соединений, известных в ультраосновных породах (сидерофильность).

Формы нахождения

Основная форма нахождения олова в горных породах и минералах — рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO2) и сульфидной (станнин) формах.

Твёрдая фаза. Минералы

В общем можно выделить следующие формы нахождения олова в природе:

  1. Рассеянная форма
    ; конкретная форма нахождения олова в этом виде неизвестна. Здесь можно говорить об изоморфно рассеянной форме нахождения олова вследствие наличия изоморфизма с рядом элементов (Ta, Nb, W — с образованием типично кислородных соединений; V, Cr, Ti, Mn, Sc — с образованием кислородных и сульфидных соединений). Если концентрации олова не превышают некоторых критических значений, то оно изоморфно может замещать названные элементы. Механизмы изоморфизма различны.
  2. Минеральная форма
    : олово установлено в минералах-концентраторах. Как правило, это минералы, в которых присутствует железо Fe+2: биотиты, гранаты, пироксены, магнетиты, турмалины и т. д. Эта связь обусловлена изоморфизмом, например по схеме Sn+4 + Fe+2 → 2Fe+3. В оловоносных скарнах высокие концентрации олова установлены в гранатах (до 5,8 вес.%) (особенно в андрадитах), эпидотах (до 2,84 вес.%) и т. д.

На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Россия, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротине грейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu2+1Fe+2SnS4 или тиллита PbSnS2 и других минералов.

Получение олова из руды и месторождения

Процесс получения сплава зависит от того, в какой форме его нашли. Олово в виде руды не имеет значительных отличий от производства других цветных металлов. Процесс состоит из трех этапов:

  1. Добыча, обработка расходного сырья (руды).
  2. Восстановительная плавка для получения чернового металла.
  3. Рафинирование подготовленного сырья допустимыми способами.

Разработка россыпных месторождений осуществляется с помощью промышленных песковых насосов.

Касситеритстатья: Касситерит

Касситерит

(от греч. kassiteros — олово) — главный рудный минерал для получения олова. Теоретически содержит 78,62 % Sn. Образует отдельные выделения, зерна, сплошные массивные агрегаты, в которых зерна минерала достигают в размере 3 — 4 мм и даже больше.

  • Плотность 6040-7120 кг/м³ (наиболее низкая у светлоокрашенных касситеритов).
  • Твердость 6½.
  • Блеск — матовый, на гранях — алмазный.
  • Спайность несовершенная.
  • Излом раковистый.

Основные формы выделения касситерита:

  1. микровключения в других минералах;
  2. акцессорные выделения минерала в породах и рудах;
  3. сплошные или вкрапленные руды: игольчатые радиально-лучистые агрегаты (Приморье), коломорфные и криптокристаллические выделения и скопления (Приморье); кристаллическая форма — главная форма выделения касситерита. В России месторождения касситерита имеются на Северо-Востоке, в Приморье, Якутии, Забайкалье; за рубежом — в Малайзии, Таиланде, Индонезии, КНР, Боливии, Нигерии и др.

Марки олова

Известны следующие марки олова:

  1. О1, О1пч. Это обозначение указывает на то, что в сплаве содержится 99,9% Sn. Изготавливается в виде проволоки, прутков, чушек.
  2. ОВЧ-000. Сплав высокой чистоты. Содержание Sn в составе — 99,99%. Изготавливается в виде прутков, чушек.
  3. О2. Содержание Sn в составе — 99,565%. Производится в виде прутков, проволоки, чушек.
  4. О3. Сплав содержит 98,49% Sn. Изготавливается чушками.
  5. О4. Самое «грязное» соединение. Содержит большое количество сторонних примесей. Их примерное количество — 3,5% от общей массы.

Маркировка указывается на готовых изделиях с помощью штампа.

Свойства олова

Чтобы понять, где лучше применять олово, нужно знать характеристики, свойства химического элемента.

Химические свойства олова

Олово — химический элемент периодической таблицы Менделеева с атомным номером 50. Оно относится к группе легких металлов. Химические свойства:

  1. Электроотрицательность — 1,8.
  2. Температура плавления — 231°C.
  3. Температура кипения — 2630°C.
  4. Плотность — 7300 кг/м³.
  5. Атомная масса химического элемента — 118,71.
  6. Теплоемкость — 0,226 кДж/(кг·°С).

Олово инертно к воздействию воды, воздуха, если в помещении комнатная температура. На поверхности заготовки, которая находится на открытом воздухе, образуется оксидная пленка, защищающая металл от окисления, образования ржавчины.

Физические свойства олова

К физическим свойствам олова относят:

  1. Плотность — 7,31 г/см3.
  2. Металлический блеск — есть.
  3. Прозрачность —нет.
  4. Цвет — серо-белый.
  5. Спайность — нет.
  6. Прочность — ковкий металл.
  7. Твердость — до 2 по шкале Мооса.
  8. Высокая электропроводность.

Белое олово является парамагнетиком, а серое диамагнетиком.

Оптические свойства олова

Оптическими свойствами олова считаются:

  1. Умеренная анизотропия.
  2. Не плеохроирует.
  3. Тип металла — изотропный.
  4. Олово не флуоресцентный материал.

Кристаллографические свойства олова

Кристаллографическими свойствами олова является:

  1. Тетрагональная сингония.
  2. Пространственная группа металла — I 41/amd.
  3. Точечная группа — 4/mmm.

Происхождение названия

Латинское название stannum

, связанное с санскритским словом, означающим «стойкий, прочный», первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67 % олова; к IV веку этим словом стали называть собственно олово.

Слово олово

— общеславянское, имеющее соответствия в балтийских языках (ср. лит.
alavas
,
alvas
— «олово», прусск.
alwis
— «свинец»). Оно является суффиксальным образованием от корня
ol-
(ср. древневерхненемецкое
elo
— «жёлтый», лат.
albus
— «белый» и пр.), так что металл назван по цвету.

Виды олова

Виды олова для пайки:

  1. ПОС-18. Содержит несколько основных компонентов — олово (18%), свинец (около 81), сурьму (2,5%). Применяется при лужении металлов. Подходит для создания швов при низких стандартах. Температура плавления — 270°C.
  2. ПОС-30. Содержит олово (28%), свинец (около 70%), сурьму (2%). Применяется для пайки меди, стали, латуни. Температура плавления — 270°C.
  3. ПОС-50. Содержит олово (50%), свинец (около 50%), сурьму (0,8%). Применяется для спаивания радиодеталей, получения высокого качества шва. Температура плавления — 230°С.
  4. ПОС-90. Содержит олово (90%), свинец (9–10%), сурьму (0,15%).

Отдельные виды оловянных припоев — ПОС-40, ПОС-60. Применяются для пайки радиодеталей.

Добыча

Мировые месторождения касситерита разрабатывают в Юго-Восточной Азии, в основном в Китае, Индонезии, Малайзии и Таиланде. Другие важные месторождения касситерита находятся в Южной Америке (Боливии, Перу, Бразилии) и Австралии. В России запасы оловянных руд расположены в Чукотском автономном округе (рудник/посёлок Валькумей, разработка месторождения закрыта в начале 90-х годов), в Приморском крае (Кавалеровский район), в Хабаровском крае (Солнечный район, Верхнебуреинский район (Правоурмийское месторождение)), в Якутии (месторождение Депутатское) и других районах.

Как отличить олово от припоя?

Прежде всего, чтобы отличить чистое олово от припоя, нужно знать, что оно без примесей хрустит. Если взять пруток олова и попытаться отломить от него кусок, то будет слышен хруст.

Также при определении олова рекомендуется смотреть вот на что:

  • Вес. Припой с содержанием свинца будет всегда тяжелее олова. Поэтому если взять в руки или положить на весы олово и припой, то разница в весе будет более чем ощутимая;
  • Внешний вид. На вид чистое олово имеет серебристый и слегка белый оттенок, в то время как свинец всегда темноватый. Происходит это из-за того, что свинец активно окисляется на воздухе, поэтому он сильно темнеет;
  • Чистое олово хрустит при деформации. Отличие припоя со свинцом как раз в том, что его структура мягка. Припой можно легко резать, гнуть, ломать, и при этом такого хруста как у чистого олова не будет.

Чаще всего людям нужно знать, чистое перед ними олово или нет, при изготовлении каких-то определённых вещей. Никому не хотелось бы носить предметы с содержанием свинца, поскольку все знают, что свинец вреден, и со временем могут возникнуть серьезные проблемы со здоровьем.

Гидроокисные соединения

Второстепенное место занимают гидроокисные соединения олова

, которые можно рассматривать как соли полиоловянных кислот. К ним можно отнести минерал сукулаит Ta2Sn2+2O [8]; твёрдый раствор олова в магнетите вида Fe2SnO4 или Fe3SnO3 (Бретштейн Ю. С., 1974;Воронина Л. Б. 1979); «варламовит» — продукт окисления станнина; считается, что он представляет собой смесь аморфных и полуаморфных соединений Sn, метаоловянной кислоты, поликонденсированной фазы и гидрокасситеритовой фазы. Известны также гидратированные продукты окисления — гидромартит 3SnOxH2O; мушистонит (Cu,Zn,Fe)Sn(OH)6; гидростаннат меди CuSn(OH)6 и др.

Силикаты

Известна многочисленная группа силикатов олова, представленная малаяитом CaSn[SiO5] [9]; пабститом Ba(Sn, Ti)Si3O9[8], стоказитом Ca2Sn2Si6O18x4H2O и др. Малаяит образует даже промышленные скопления.

Шпинелиды

Из других окисных соединений известны также шпинелиды, например, минерал нигерит Sn2Fe4Al16О32 (Peterson E.U., 1986).

Сульфидные соединения олова

Включает различные соединения олова с серой. Это вторая по промышленному значению группа минеральных форм нахождения олова. Наиболее важным из них является станнин, второй по значению минерал. Кроме этого отмечаются франкеит Pb5Sn3Sb2S14, герценбергит SnS, берндтит SnS2, тиллит PbSnS2 и кестерит Cu2ZnSnS4. Выявлены и более сложные сульфидные соединения олова со свинцом, серебром, медью, имеющие в основном минералогическое значение. Тесная связь олова с медью обусловливает частое присутствие на оловорудных месторождения халькопирита CuFeS2 с образованием парагенезиса касситерит — халькопирит.

Станнин

Станнин (от лат. stannum

— олово), оловянный колчедан, минерал из класса сульфидов с общей формулой вида Cu2FeSnS4. Она следует из формулы халькопирита путём замены одного атома Fe на Sn. Содержит 29,58 % Cu, 12,99 % Fe, 27,5 % Sn и 29,8 S, а также примеси Zn, Sb, Cd, Pb и Ag. Широко распространённый минерал в оловорудных месторождениях России. На ряде местрождений России (Приморье, Якутия) и Средней Азии (Таджикистан) он является существенным элементов сульфидных минералов и часто вместе с варламовитом составляет 10—40 % общего олова. Часто образует вкрапленность в сфалерите ZnS, халькопирите. Во многих случаях наблюдаются явления распада станнина с выделением касситерита.

Коллоидная форма

Коллоидные и олово-кремнистые соединения играют значительную роль в геохимии олова, хотя детально она не изучена. Значительное место в геологии элемента играют коломорфные соединения и продукты его кристаллических превращений в скрытокристаллические разности. Коломорфный касситерит рассматривается как форма выражения вязких гелеобразных растворов.

Независимые исследования выявили аномально высокую растворимость SnO2 в хлор-кремниевых растворах. Максимальная растворимость достигается при отношении .

Анализ свойств соединения Sn(OH)4 и близость их к соединению Si(OH)4 выявляет способность его к полимеризации с образованием в конечном счёте соединений H2Snk

O2
k
+1, Sn
k
O2
k
−1(OH)2. В обоих случаях возможно замещение группы (ОН) на анионы F и Cl.

Таким образом, полимеризация молекул Sn(OH)4 и соединение их с молекулами Si(OH)4 ведёт к образованию геля (коллоида) и появлению цепочек Hm

Sn2
n
Si
n
O
p
, причём
m
≤ 8, или H
s
[SiO2
n
(SnO
m
)
d
] (Некрасов И. Я. и др., 1973).

Имеющиеся данные говорят о том, что коллоидная форма является естественным промежуточным звеном при осаждении олова из гидротермальных растворов.

Формы нахождения олова в жидкой фазе

Наименее изученная часть геохимии олова, хотя в газово-жидких включениях установлены касситериты в виде минералов-узников (Кокорин А. М. и др., 1975). Работ по анализу конкретных оловосодержащих природных растворов нет. В основном вся информация основана на результатах экспериментальных исследований, которые говорят только о вероятных формах нахождения олова в растворах. Существенную роль в разработке методики этих исследований принадлежит академику В. Л. Барсукову

Вся совокупность экспериментально установленных форм нахождения олова в растворах разбивается на группы:

  1. Ионные соединения
    . Эти соединения и их структура описываются с позиций классических валентных и стереохимических представлений. Выделяюся подгруппы: Простые ионы Sn+2 и Sn+4 в основном обнаружены в магматических раславах, а также в гидротермальных растворах, обладающими низкими значениями рН. Однако в существующих гидротермальных системах, отражаемых составом газово-жидких включений, такие условия не установлены.
  2. Соли галлоидных кислот — SnF2, SnF40, SnCl40. Считается, что роль хлора в переносе и отложении олова и сопутствующих металлов более значительна, чем роль фтора.
  3. Гидроксильные соединения олова. В щелочных условиях исходными являются соединения H2SnO2, H2SnO4, H2SnO3. Эти формы часто устанавливаются на основе известных минеральных форм. Часть этих форм имеет как искусственное (CaSnO3, Ca2SnO4), так и природное (FeSnO2, Fe2SnO4) происхождение. В кислых средах эти соединения ведут себя как слабые основания типа Sn(OH)2, Sn(OH)4. Считается, что одной из форм проявления подобных соединений является варламовит. Согласно экспериментальным данным Sn(OH)4 отлагается только при Т< 280°C в слабокислых или нейтральных условиях при рН = 7 — 9. Соединения Sn(OH)4 и Sn(OH)3+ устойчивы при рН= 7 — 9, тогда как Sn(OH)2+2 и Sn(OH)+2 — при рН < 7. Довольно часто группы (ОН)-1 замещаются на F и Cl, создавая галогенозамещённые модификации гидросоединений олова. В общем виде эти формы представлены соединениями Sn(OH)4-kFk или Sn(OH)4-kFk-nn. В целом соединение Sn(OH)3F устойчиво при Т = 25 — 50 °C, а Sn(OH)2F² при Т = 200 °C.
  4. Сульфидные соединения. По экспериментальным данным в растворе присутствуют соединения SnS4-4 или SnS3-2 при рН > 9; SnS2O-2 (pH = 8 — 9) и Sn(SH)4 (pH = 6). Имеется упоминание о существовании соединения типа Na2SnS3, неустойчивого в кислой среде.
  • Комплексные соединения
    олова изучены при растворении касситерита во фторированных средах. Эти соединения отличаются высокой растворимостью. Этими же свойствами обладают соединения, полученные в хлоридных растворах. В качестве основных форм комплексных соединений, известных из экспериментов, можно назвать Na2[Sn(OH)6], Na2[SnF6], Na2[Sn(OH)2F4] и пр. Эксперименты показали, что комплекс Sn(OH)4F2-2 будет преобладать при Т = 200 °C.
  • Коллоидные и олово-кремнистые соединения
    . Об их существании говорит присутствие на многих месторождениях коломорфных выделений касситерита. Смотреть выше.
  • Промышленные типы месторождений олова

    Описанные выше геохимические особенности олова находят косвенное отражение в формационной классификации оловорудных месторождений, предложенной Е. А. Радкевич с последующими дополнениями.

    А.
    Формация оловоносных гранитов
    . Касситерит установлено в акцессорной части гранитов. Б.
    Форрмация редкомеиальных гранитов
    . Это граниты литионит-амазонит-альбитового типа (апограниты по А. А. Беусу). Касситерит в акцессорной части вместе колумбит-татнатлитом, микролитом и пр. В.
    Формация оловоносных пегматитов
    . Оловянная минерализация характерна для Be-Li-, Be-Ta-, F-Li- типов. Г.
    Формация полевошпат-кварц-касситеритовая
    . Выделена Ив. Ф. Григорьевым. Это кварц-полевошпатовые жилы с касситеритом и др. минералами. Д.
    Формация кварц-касстеритовая
    . Распространена на СВ СССР. Это жильные зоны, грейзены с кварцем, мусковитом, вольфрамитом, касситеритом и др. Е.
    Формация касситерит-силикатно-сульфидная
    с турмалиновым и хлоритовым типами. Одна из основных продуктивных формаций Приморья России. Ж.
    Формация касситерит-сульфидная
    . Также основная оловопродуктивная формация. В ней выделяют основные типы:

    1. штокверковое олово-вольфрамовое оруденение;
    2. рудные тела квар-касситерит-арсенопиритового типа;
    3. продуктивные кварцевые жилы сульфидно-касситерит-хлоритового типа;

    З.Формация оловянно-скарновая
    . И.
    Формация деревянистого олова
    (риолитовая формация). К.
    Формация основных и ультраосновных пород
    (по И. Я. Некрасову) Л.
    Формация щелочных пород Украины
    (по В. С. Металлиди, 1988).

    При какой температуре плавится олово?

    Олово относится к легким металлам. Оно пластичное и ковкое, на вид серебристо-белого цвета. Олово является достаточно дорогим металлом. Температура плавления олова составляет 231 градус. При 2500 градусах олово начинает закипать.

    На сегодняшнее время существует достаточно большое количество припоев с использованием олова. При выборе припоя рекомендуется обращать внимание на его обозначения. ПОС-40 имеет лишь 40% олова в своём составе, ПОС-61 уже больше, то есть, 61% олова.

    Состав припоя легко определить и визуальным способом. Если припой сильно темный или матового цвета, то он содержит небольшое количество чистого олова, но не более 30-40%. Если припой блестит и светлый на вид, то процентное содержание олова в нем выше.

    Следует заметить, что в некоторых странах запрещено при изготовлении электроники использовать свинцовые припои. Как правило, на корпусах таких электронных устройств есть специальный логотип, который указывает на то, что устройство сделано с применением бессвинцовой технологии.

    Оловянная чума

    При температуре ниже 13,2 °C происходит увеличение удельного объёма чистого олова на 25,6 %, и металл образует новую модификацию, обладающую полупроводниковыми свойствами , — серое олово (α-Sn), в кристаллической решётке которого атомы располагаются менее плотно. Одна модификация переходит в другую тем быстрее, чем ниже температура окружающей среды. При −33 °C скорость превращений становится максимальной. Олово трескается и превращается в порошок. Причём соприкосновение серого олова и белого приводит к «заражению» последнего. Совокупность этих явлений называется «оловянной чумой». Начало научного изучения этого фазового перехода было положено в 1870 г. работами петербургского учёного Ю. Фрицше. Установлено, что это есть процесс аллотропического превращения белого олова в серое со структурой типа алмаза. Много ценных наблюдений и мыслей об этом процессе высказано Д. И. Менделеевым в его «Основах химии».

    Белое олово — серебристо-белый, блестящий металл со специфической тетрагональной структурой и электронным s2p2-состоянием — β-фазой. Серое олово — ковалентный кристалл со структурой алмаза и электронным sp3-состоянием — α-фазой. Фазовые переходы олова из белого в серое и обратно сопровождаются перестройкой электронной структуры и сильным (26,6 %) объёмным эффектом. Белое олово можно переохладить до гелиевых температур (температура фазового α-β-равновесия около +13,2 °C).

    В литературе встречаются указания на то, что олово, попавшее в пробирку, где когда-то находилось способное инфицировать вещество, «заражается»! Показано экспериментально, что если на несколько суток (даже при комнатной температуре) положить на стекло кристалл InSb, то после его удаления «память» о его пребывании там сохраняется. Это стекло «заражает» образец белого олова. Но не сразу, а по прошествии нескольких дней. И не со 100 % вероятностью. С повышением температуры стекла резко возрастает «инкубационный период» и падает вероятность «заражения». Выдержка затравки на стекле при 100 °C полностью устраняет возможность «заражения». Промывание пластины водой, спиртом и другими поглощающими воду веществами также «стирает» эту «память». Потеря «памяти» происходит и в том случае, если затравка находилась в контакте со стеклом в вакууме или в сухом эксикаторе. Существует ещё одно замечательное явление, характерное для «оловянной чумы», — это «память» белого олова о том, что оно когда-то прежде переходило в серое. Ю. Фрицше ещё в 1870 г. заметил, что белое олово, полученное путём нагрева из серого, при повторном охлаждении переходит в серое значительно легче, чем при первом. Образец как бы «вспоминает» свою предысторию, в связи с чем это явление, теперь широко известное, обычно называют «памятью». Коэн к одному из признаков «оловянной чумы» отнёс «порчу» олова после «выздоровления».

    Одним из средств предотвращения «оловянной чумы» является добавление в олово стабилизатора, например висмута.

    Любопытные факты:

    • «Оловянная чума»— одна из причин гибели экспедиции Скотта к Южному полюсу в 1912 г. Она осталась без горючего из-за того, что оно просочилось через запаянные оловом баки, поражённые «оловянной чумой», названной так в 1911 г. Г. Коэном.
    • Отдельные историки указывают на «оловянную чуму» как на одно из обстоятельств поражения армии Наполеона в России в 1812 г. — сильные морозы привели к превращению оловянных пуговиц на мундирах солдат в порошок.
    • «Оловянная чума» погубила многие ценнейшие коллекции оловянных солдатиков. Например, в запасниках питерского музея Александра Суворова превратились в труху десятки фигурок — в подвале, где они хранились, лопнули зимой батареи отопления.

    Сферы применения олова

    Сферы применения олова:

    1. Защита металлических поверхностей. Применяется в виде специального покрытия. Оно не выделяет вредных веществ при эксплуатации, устойчиво к образованию ржавчины.
    2. Изготовление белой жести (второе название луженое железо). Используется для производства дымовых труб, тары для хранения пищевых продуктов, подшипников.
    3. Производство сантехники, запорной арматуры, фурнитуры.
    4. Изготовление сплавов.
    5. Производство припоев.
    6. Изготовление ограждений, лестничных перил.
    7. Производство скульптур, скамеек, вешалок, светильников для украшения интерьера.

    Больше 50% добытого металла применяется для получения белой жести, предметов из стали с дополнительным защитным покрытием.

    Изотопы

    Природное олово состоит из десяти стабильных нуклидов с массовыми числами 112 (в смеси 0,96 % по массе), 114 (0,66 %), 115 (0,35 %), 116 (14,30 %), 117 (7,61 %), 118 (24,03 %), 119 (8,58 %), 120 (32,85 %), 122 (4,72 %) и 124Sn (5,94 %).

    Элемент обладает наибольшим числом стабильных изотопов, что связано с фактом, что 50 (число протонов в ядрах олова) является магическим числом — оно составлет заполненную протонную оболочку в ядре и повышает тем самым энергию связи и стабильность ядра.

    Изотопы олова 117Sn и 119Sn являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.

    Преимущества и недостатки олова

    К преимуществам отлова относятся:

    1. Пластичность. Из олова изготавливают сложные изделия для украшения интерьера.
    2. Инертность. Металл применяется в пищевой промышленности для изготовления посуды, тар для хранения продуктов.
    3. Низкая температура плавления. Олово используется для нанесения на металлические детали в виде защитного покрытия.

    Недостатки:

    1. Низкий показатель прочности. Сплав не подходит для изготовления деталей, которые будут подвергаться большим нагрузкам.
    2. Редкость. Из-за этого увеличивается цена на материал.

    Производство

    В процессе производства рудоносная порода (касситерит) подвергается дроблению до размеров частиц в среднем ~ 10 мм, в промышленных мельницах, после чего касситерит за счет своей относительно высокой плотности и массы отделяется от пустой породы вибрационно-гравитационном методом на обогатительных столах. В дополнение применяется флотационный метод обогащения/очистки руды. Полученный концентрат оловянной руды выплавляется в печах. В процессе выплавки восстанавливается до свободного состояния посредством применения в восстановления древесного угля, слои которого укладываются поочередно со слоями руды.

    Сплавы олова

    Сплавы на основе олова также известны, как белые металлы, обычно содержат в своем составе медь, сурьму и свинец. Сплавы обладают различными механическими свойствами в зависимости от их состава.

    Сплавы олова со свинцом нашли свое коммерческое использование для широкого набора составов. Так, 61,9% олова и 38,1% свинца соответствуют эвтектическому составу, градус затвердевания которого составляет 183 °C. Сплавы с другим соотношением этих металлов плавятся и кристаллизуются в широком интервале температур, когда существует равновесие между твердой и жидкой фазами. При такой кристаллизации в расплаве начинают выделяться твердые сегрегации, которые приводят к образованию различных структур. Сплав эвтектического состава, так как имеет наименьшую температуру плавления, используется в качестве предохранителя от перегрева компонентов электроники.

    Также существуют сплавы, в которых помимо указанных металлов присутствует небольшое количество сурьмы (до 2,5%). Основной проблемой сплавов на основе олова и свинца является их отрицательное влияние на экологию, поэтому в последнее время разрабатываются их заменители, в которых не используется свинец, например, сплавы с серебром и медью.

    Сплавы олова со свинцом и сурьмой используют для декоративных украшений, а некоторые сплавы олова, меди и сурьмы используют в качестве смазки для уменьшения трения в подшипниках, благодаря их антифрикционным свойствам. Помимо вышесказанных сплавов, олово используют в бронзовых сплавах и в сплавах с титаном и цирконием.

    Источники:

    • https://metalloy.ru/metally/olovo
    • https://obrabotkametalla.info/splavy/temperatura-plavleniya-olova
    • https://zen.yandex.ru/media/svarkapajka/kak-bez-truda-otlichit-chistoe-olovo-ot-pripoia-svinca-60758132063a3d24f993d93c
    • https://chem.ru/olovo.html

    Собственно минеральные формы

    Самородные элементы, сплавы и интерметаллические соединения

    Хотя концентрации этих минералов в породах очень низки, однако распространены они в широком круге генетических образований. Среди самородных форм вместе с Sn выявлены Fe, Al, Cu, Ti, Cd и т. д., не считая уже известные самородные платиноиды, золото и серебро. Эти же элементы образуют между собой и различные сплавы: (Cu + Sn + Sb), (Pb + Sn + Sb) и др., а также твёрдые растворы. Среди интерметаллических соединений установлены стистаит SnSb, атакит (Pd,Pt)3Sn, штумырлит Pt(Sn,Bi), звягинцевит (Pd,Pt)3(Pb,Sn), таймырит (Pd,Cu,Pt)3Sn и другие.

    Приведённые формы нахождения олова и других элементов встречаются в различных геологических образованиях:

    1. Группа интрузивных и эффузивных магматических пород: траппы, пикриты Сибирской платформы, гипербазиты и габброиды Камчатки, кимберлиты Якутии, лампроитыАлдана и т. д.; гранитоиды Приморья, Дальнего Востока, Тянь-Шаня.
    2. Группа метасоматически и гидротермально изменённых пород: медно-никелевые руды Сибирской платформы, золоторудные объекты Урала, Кавказа, Узбекистана и т. д..
    3. Группа современного рудообразования: пелагические осадки Тихого океана, продукты Большого Трещинного Толбачинского извержения, гидротермальная система Узон на Камчатке и пр.
    4. Группа осадочных пород различного происхождения.
    Рейтинг
    ( 2 оценки, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]
    Для любых предложений по сайту: [email protected]