Смесь оксидов железа, образовывающаяся при взаимодействии кислорода с раскалённым металлом, имеет обобщённое название — железная окалина. Она состоит из Fe3O4, FeO и Fe2O3 (магнетита, вьюстита и гематита соответственно) и представлена двумя легкоотделяемыми друг от друга слоями. При их суммарной толщине до 40 нм окалина невидима невооружённому взгляду, свыше 40 и до 500 нм — выдаёт себя цветами побежалости (радужным отливом). Постоянный же окрас появляется, если слой железной окалины на металле превышает 500 нм.
Состав
Наружный слой оксида железа — гематит. Он обладает большой твёрдостью (1030 ед. по шкале Виккерса), абразивностью и очень плохо растворяется в кислотах. Под ним в условиях частичной нехватки кислорода формируется более мягкий и почти нерастворимый в кислотах магнетит. Ближе всего к металлу находится рыхлый и мягкий вьюстит, который легко поддается устранению механическим путём или кислотным травлением.
Толщина каждого из трёх слоёв зависит от температуры обработки стали. Так, при превышении порога в 570 °C образуется чётко выраженная трёхслойная структура окалины. Дальнейшее повышение температуры ведёт к увеличению толщины вьюстита. Если же сталь обрабатывается при температурах ниже 570 °C, то в составе окалины преобладают магнетит и гематит.
По цвету железной окалины можно определить температуру обработки стали. Так, при температуре в 700–750 °C в составе окалины больше гематита, из-за чего она приобретает рыжевато-красный оттенок. Образовавшийся при высокотемпературном (900–1000 °C) прокате слой оксидов из-за более высокого процента вьюстита становится чёрным.
Почему нужно как можно скорее убрать инородное тело?
Любой попавший в глаз предмет, не зависимо от размеров и происхождения, подлежит обязательному и как можно более быстрому удалению по следующим соображениям:
- Любой предмет из окружающей среды заражен микроорганизмами, является потенциальным источником инфекции, которая хорошо развивается во влажной среде глаза.
- Возникшее воспаление в наружных оболочках может легко распространиться на глубокие глазные ткани;
- Инородное тело травмирует глазную ткань, защитная система организма автоматически пытается избавиться и отграничиться от него. К глазу усиливается приток крови, лимфы, защитных клеток, возникает уплотнение и помутнение тканей, резкое снижение зрения;
- Металлические инородные тела, вступая в реакцию с глазной влагой, образуют опасные окислы, которые оказывают токсическое воздействие на ткани глаза, изменяют их структуру, вызывая резкое падение зрения вплоть до атрофии сетчатки.
Даже застрявшее маленькая соринка, песчинка в оболочке век может привести к воспалению конъюнктивально-хрящевого слоя, деформации хряща и всего века, к его завороту и потере функции, что потребует сложной пластической операции.
Удаление окалины
Слой оксидов железа с прокатной стали удаляют со стальной заготовки несколькими способами.
Это очистка:
- механическая;
- химическая;
- электрохимическая.
Возможно также сочетание вариантов.
Механическое воздействие на прокат сводится к пропуску проволоки или листа с окалиной через ряд роликов. При этом достигается частое изгибание заготовки, под воздействием которого железная окалина рассыпается на отдельные чешуйки и осыпается с металла. Для финишной очистки могут быть использованы абразивы, наждачные ленты, щётки из проволоки.
Достоинством этой технологии является сравнительная дешевизна и экологичность. Но поскольку отказ от смазки при такой обработке нецелесообразен, это приводит к замасливанию железной окалины, что затрудняет дальнейшую её переработку.
Химический и электрохимический способы очистки стали называют травлением. Для этих целей используются серная и соляная кислоты, реже — фосфорная, азотная, плавиковая или их смесь. Главными недостатками такого способа является одноразовое использование травильных растворов (не восстанавливаются) и низкий спрос на побочный продукт преобразования окалины — железный купорос. По этой причине травление применяется довольно редко, и ему обычно предшествует механическая очистка проката от окалины.
Особенности
Твёрдость окалины сочетается с её хрупкостью, из-за чего вкрапления оксида внутри структуры металла резко понижают его эксплуатационные характеристики. По этой же причине железная окалина не может быть использована в качестве защитного покрытия, хоть она и не взаимодействует с кислородом. Более того, в месте скола оксидов наблюдается усиленное окисление стали, что происходит из-за разности потенциалов окалины и стали. По этой причине её удаляют с готового проката.
Читать также: Как из постоянного тока сделать переменный 12в
Применение окалины
Опытными кузнецами давно было примечено повышение сопротивляемости металла коррозии при формировании на нём тонкого слоя окалины. Сейчас же воронение оружейной стали используется лишь в качестве декоративной отделки. Её цвет зависит от способа обработки (кислота, щёлочь, температура) и толщины оксидной плёнки, составляющей от 1 до 10 мкм.
Прокатная окалина, удельный вес которой достигает 3% от общего веса готовых изделий, является ценным сырьём для металлургического производства за счёт высокого содержания (до 75%) в ней железа. Основное направление её переработки — очистка от примесей и восстановление, после которого она превращается в низкоуглеродистую сталь.
Некоторые составы окалины успешно применяются в качестве красящих пигментов и активно используются в строительстве. Также из окалины производится железный порошок, применяемый в металлургии, при изготовлении самонагревающихся смесей и даже в пищевой промышленности.
Химический состав этого отхода металлургической промышленности стандартизирован. Её стоимость может колебаться в зависимости от преобладания определённых видов окислов и количества примесей. Усреднённая цена на начало 2022 года составляла 50 американских долларов за тонну железной окалины.
Оцените статью:
Рейтинг: 0/5 — 0 голосов
Влияние окалины на формирование качественных характеристик поверхностного слоя горячекатаной полосы
Качеству горячекатаной продукции уделяется серьезное внимание на всех этапах производства. В результате аналитического исследования источников выявлено, что множество авторов сводят проблемы качества горячекатаного проката к наличию окалины на его поверхности, на которое влияет: – качество оборудования МНЛЗ и его соответствие уровню развития используемой технологии; – качество непрерывнолитой заготовки; – состояние нагревательных устройств и технологии нагрева НЛЗ перед прокаткой; – эффективность окалиновзламывающих устройств; – состояние поверхности прокатных валков; – мониторинг качества поверхности металла на всех этапах технологической цепочки
Существенное влияние на качество НЛЗ и горячекатаной полосы оказывает наличие окалины на их поверхностях, которая на стадии производства НЛЗ формируется при взаимодействии раскаленного металла с воздухом, охлаждающей жидкостью и паром, а на стадии горячей прокатки при нагревании заготовок в методических печах при взаимодействии с кислородом и другими газами-окислителями, содержащимися в печной атмосфере, и непосредственно на прокатном стане при контакте с окружающей средой (воздух, водяной пар) в меж-клетьевых пространствах и на отводящем рольганге.
В зависимости от применяемого оборудования и технологии количество образуемой на поверхности металла окалины может достигать 1-2 %, что в масштабах страны составляет 500-1000 тысяч тонн в год и фактически соответствует годовому объему производства стали на металлургическом заводе средней мощности .
Производство непрерывнолитой заготовки, прокатка, ковка, горячая объемная штамповка и другие технологические процессы обработки, связанные с нагревом и охлаждением железа и стали на воздухе или в продуктах сгорания топлива сопровождаются окислением обрабатываемых металлов и сплавов. При окислении, которое особенно интенсивно протекает при температурах, превышающих 600 С, поверхность стали покрывается продуктами газовой коррозии — окалиной .
К наиболее значительным работам по изучению окалинообразования следует отнести монографии В. И. Архарова , И. Н. Францевича, Р. Ф. Войтовича, В. А. Лавренко , О. Кубашевского и В. Гопкинса , работы Ж. Бенара, Ж. Валаней, Ж. Пайдасси . Однако механические свойства окалины в этих работах не рассматриваются, а лишь указывается на необходимость их исследования. Изучению свойств окалины применительно к условиям обработки металлов давлением посвящены работы В. Н. Рудбаха и С. М. Сафонова , В.М. Темлян-цева и Н.В. Темлянцева .
Исследования механических и физических свойств отдельных составляющих фаз окалины проведены авторами .
Окалина, образующаяся на углеродистых и низколегированных сталях, состоит, как правило, из трех слоев, которые приближенно соответствуют закиси FeO (вюстит), окиси железа Fe2O3 (гематит) и магнетиту Fe3O4 . Двусторонняя диффузия реагентов в слое вюстита проявляется в разделении его на два подслоя .
Последовательность в расположении слоев разных фаз в окалине соответствует последовательности этих фаз на диаграмме состояния железо-кислород . При наличии стали легирующих элементов кремния, молибдена и ванадия на ее поверхности при высоких температурах образуются соединения Fe2SiO4 (фаялит), MnO3 и V2O5, которые относятся к труднотравимым . Сцепление окалины с окисляемой металлической поверхностью при горячей обработке давлением играет важную роль. С одной стороны, прочное сцепление окалины уменьшает окисление стали во время нагрева заготовок в печах и при их последующей обработке; с другой стороны, затрудняет удаление окалины в процессе деформации, а также перед последующей деформацией заготовок в холодном состоянии или другими видами обработки, что приводит к ухудшению качества поверхности изделий и повышает износ инструмента.
В работах подробно рассмотрены основные случаи образования поверхности отрыва окалины от металла при различном состоянии слоя окалины на границе раздела.
В общем случае можно выделить три характерных типа строения поверхности раздела окалина-сталь (Рисунок 1.1): слоевой (послойный), зернограничный и сталагмитообразный (от греческого stalagma – капля) .
В случае слоевого типа строения между металлом и окалиной имеется резкая граница раздела. При таком строении при деформации металла в процессе прокатки окалина отделяется достаточно легко. Слоевой тип поверхности раздела наблюдается после сравнительно низкотемпературного (до 1000-1050С) нагрева сталей, не содержащих легирующих элементов, способных образовывать легкоплавкие соединения, например углеродистых, хромистых и др.
Процесс образования
Рассматриваемое покрытие продемонстрировано продуктом окисления металла. Его формирование связано с большими температурами и происходит во время обработки металла температурой либо давлением. Прокат во всяком случае покрыт окисным слоем. Он образуется на чистом воздухе в сухих условиях в виде пленок. С самого начала они незаметны даже под микроскопом. Под термическим влиянием толщина окисного слоя увеличивается до заметных размеров. Металлической окалиной называют толстое покрытие, формирующееся при термическом влиянии в условиях открытого воздуха.
Они предоставлены гематитом, магнетитом, вюститом. Первые два оксида железа отличаются высокой плотностью и соединены переходной структурой. Вюстит наоборот представлен пористым соединением. От вышеназванных оксидов он выделяется большей диффузинной проницаемостью. Вюстит имеет с ними непрочную связь.
Структура металлической оксидной пленки устанавливается окружающими условиями и температурой. Так, в кислородосодержащей обстановке при нагревании более 570 °C и быстром охлаждении сформировывается трехслойное покрытие. Слой находящийся с внешней стороны предоставлен гематитом, следующий – магнетитом и внутренний – вюститом. Как было отмечено, первые два имеют кристаллическую структуру и прочно связаны. Слой находящийся внутри структуры с порами непрочно соприкасается с ними. Это обуславливает небольшое электросопротивление металлической оксидной пленки и не тяжелое ее отслаивание.
Так, при меньшем нагреве слой вюстита выходит тонким. В случае формирования металлической окалины при большой концентрации пара либо окислов углерода при небольшом количестве кислорода и температурах более 1000 °C гематит востанавливается, благодаря чему отсутствует в составе. Аналогичным образом, соотношение слоев напрямую устанавливается температурой. Так, при 700 °C толщина вюстита составляет 100 мкм, тогда как для магнетита и гематита – 10 и 1 мкм исходя из этого. Иначе говоря состав металлической окалины в большей мере зависит от температуры. Так, при 700-900 °C она предоставлена практически на 90% вюститом, приблизительно на 10% магнетитом и менее чем на 1% гематитом. При большем нагреве и избытке кислорода происходит замещение вюстита гематитом.
Во всяком случае формирование слоев металлической окалины происходит постепенно в согласии с их расположением. При охлаждении вюстит утрачивает стойкость и распадается до железа и гематита. Ввиду этого пленка приобретает гематит-магнетитовый состав. При восстановлении гематит и магнетит переходят в железо и воду. Стало быть, в результате выходит прокатная окалина, которая состоит из железа.
Выше приведены главные закономерности и факторы появления металлической окалины. В условиях в промышленности процесс ее образования очень сложен и может происходить много раз.
Что ждет пациента дальше
Доктором была удалена окалина в глазу. Что делать дальше? Необходимо пройти противовоспалительное лечение. С этой целью офтальмологи назначают антибактериальные лекарства, а также нестероидные противовоспалительные медикаменты. Рекомендуемый специалистами курс длится пять дней. Можно использовать антибактериальные препараты в мазевой форме. В случае глубокой окалины доктором назначаются НПВС и внутрь.
Процесс заживления роговицы занимает обычно 7-14 дней. Нередки случаи образования эпителиального полупрозрачного помутнения. В случае локализации чужеродной частицы в центре роговицы может зайти речь о снижении зрения.
Химические свойства
- Разлагается при нагревании:
2Fe3O4 →1538oC 6FeO + O2
- Реагирует с разбавленными кислотами:
Fe3O4 + 8HCl → FeCl2 + 2FeCl3 + 4H2O
- Реагирует с концентрированными окисляющими кислотами:
Fe3O4 + 10HNO3 → 3Fe(NO3)3 + NO2↑ + 5H2O
- Реагирует с щелочами при сплавлении:
Fe3O4 + 14NaOH →400−500oC Na4FeO3 + 2Na5FeO4 + 7H2O
- Окисляется кислородом воздуха:
4Fe3O4 + O2 →450−600oC 6Fe2O3
- Восстанавливается водородом и монооксидом углерода:
Fe3O4 + 4H2 →1000oC 3Fe + 4H2O Fe3O4 + 4CO →700oC 3Fe + 4CO2
- Конпропорционирует при спекании с железом:
Fe3O4 + Fe →900−1000oC 4FeO
Доменный процесс производства чугуна
Доменный процесс производства чугуна составляют следующие стадии:
а) подготовка (обжиг) сульфидных и карбонатных руд — перевод в оксидную руду:
FeS2→Fe2O3 (O2,800°С, -SO2) FeCO3→Fe2O3 (O2,500-600°С, -CO2)
б) сжигание кокса при горячем дутье:
С(кокс) + O2 (воздух) →СO2 (600—700°С) СO2 + С(кокс) ⇌ 2СО (700—1000 °С)
в) восстановление оксидной руды угарным газом СО последовательно:
Fe2O3→(CO)
(FeIIFe2III)O4
→(CO)
FeO
→(CO)
Fe
г) науглероживание железа (до 6,67 % С) и расплавление чугуна:
Fе(т)→(C(кокс)
900—1200°С)
Fе(ж) (чугун, t пл 1145°С)
В чугуне всегда в виде зерен присутствуют цементит Fe2С и графит.
Органические вещества, содержащие Fe
Железо и его свойства крайне важны и полезны в повседневной жизни людей, хозяйственной и промышленной деятельности. Но еще соединения железа выполняют значимые функции в теле человека. Чаще всего биологическую роль выполняют именно органические вещества, содержащие Fe. Пожалуй, самым важным веществом в теле человека, содержащим железо, является гемоглобин. Гемоглобин является белком, который осуществляет транспортировку кислорода по крови и обеспечивает постоянный газообмен. Fe входит в состав многих ферментов и белков нашего тела. Этот элемент также влияет и на наш иммунитет. Не зря при нехватке железа человек чувствует себя уставшим и сонным. При снижении концентрации Fe повышается вероятность заражения инфекционными заболеваниями. Поэтому важно следить за тем, чтобы в рационе было достаточно продуктов, содержащих железо — бобы, крупы, орехи, сухофрукты, морская капуста.
Fe — строение, признаки, расположение в таблице Менделеева
Железо (Fe) — элемент 8б группы 4 периода. Порядковый номер в периодической системе — 26. Отметим, что кобальт (Co) и никель (Ni), входящие в 8б группу таблицы Менделеева, включены в семейство железа. Строение электронной оболочки атома Fe таково:
1s22s22p63s23p63d64s2
Электронное строение атома данного элемента обусловливает характерные степени окисления: +2 и + 3. Железо также может находиться в степени +6. О некоторых исключениях и интересных веществах, где этот элемент проявляет необычные свойства, поговорим чуть позже.
Рис. 1. Характеристика железа