Манометры для измерения давления газа: обзор видов измерителей, их устройство и принцип действия

Все приборы, измеряющие давление, классифицируются по нескольким критериям:

По роду измеряемого давления: манометры, вакууметры, мановакуумметры, напоромеры, микроманометры, тягомеры, тягонапоромеры, барометры, дифманометры.

Манометры — это приборы, служащие для измерения избыточного либо абсолютного давления (разности давлений). «Ноль» манометра избыточного давления находится на уровне атмосферного давления воздуха.

Вакуумметры нашли применение для измерения давления разреженных газов.

Мановакуумметр позволяет определять избыточное давление и разрежение газа.

Напоромерами измеряют небольшое избыточное давление (не более 40кПа), тягомерами — небольшое вакуумметрическое.

Дифманометры определяют разность давлений в двух точках.

Микроманометры — дифманометры для определения малых разностей давлений.

Барометрами определяют атмосферное давление воздуха.

По принципу действия : жидкостные, деформационные (пружинные, сильфонные, мембранные), грузопоршневые, электрические и другие приборы.

Жидкостные манометры состоят из сообщающихся сосудов, давление определяется по одному либо нескольким уровням. У деформационных манометров давление определяется по деформации или упругой силе деформирующегося элемента – пружины, мембраны, сильфона. В грузопоршневых манометрах искомое значение давления определяется путем уравновешивания массы грузов и поршня. Электрические манометры работают на первичных преобразователях давления.

По назначению: общетехнические для измерения давления в технологических процессах и эталонные для поверки.

По классу точности : от 0,4 до 4,0. Этот показатель характеризует погрешность измерения прибора.

По особенностям измеряемой среды : общетехнические, коррозионно-стойкие, виброустойчивые, специальные, кислородные, газовые.

Специальные манометры применяются для вязких и кристаллизующихся веществ, а также таких веществ, которые содержат твердые частицы.

Помимо вышеперечисленного приборы для измерения давления отличаются по пределу (диапазону) измерений, степени защиты от воды (восемь степеней), по виду защиты от внешних предметов (шесть степеней), по степени устойчивости к вибрациям, по степени устойчивости к влажности и температуре (11 групп).

Манометры и мановакуумметры рассчитаны на то, чтобы выдерживать кратковременную перегрузку.

На циферблате прибора маркируется разметка шкалы, единицы измерения давления, знак минуса для вакуумметрического давления, монтажное положение прибора, класс точности, наименование/обозначение среды, знак Госреестра, товарный знак завода-изготовителя.

Примеры использования электроконтактных манометров в электрических схемах смотрите здесь: Автоматизация насосов и насосных станций

Во многих технологических процессах давление является одним из основных параметров, определяющих их протекание. К ним относятся: давление в автоклавах и пропарочных камерах, давление воздуха в технологических трубопроводах и т. п.

Классификация по способу функционирования

По способу работы приборы могут быть водяными, электрическими или цифровыми, помимо этих категорий существуют и другие разновидности.

Водяные устройства действуют по принципу уравновешивания газового вещества давлением, формирующим столб с жидкостью. Благодаря им можно уточнить уровень разреженности, разность, избыточные и атмосферные данные. В эту группу входят регуляторы U-образного типа, конструкция которых напоминает сообщающиеся сосуды, причем давление в них определяется с учетом уровня воды. Также к водяным причисляют компенсационные, чашечные, поплавковые, колокольные и кольцевые газомеры, рабочая жидкость внутри них аналогична чувствительному элементу.

Тензорезистивный электрический манометр

Этот прибор для измерения давления бытового газа преобразует его в электрические данные. В эту категорию входят тензорезистивные и емкостные манометры. Первые меняют показания проводникового сопротивления после деформации и измеряют показатели до 60-10 Па с незначительными погрешностями. Их применяют в системах с быстро протекающими процессами. Емкостные газомеры влияют на подвижный электрод в виде мембраны, прогиб которой можно определить электрической схемой, они подходят для систем с ускоренными падениями давления.

Цифровые или электронные приборы относятся к устройствам высокой точности и чаще всего используются для монтажа в воздушной или гидравлической среде. Из плюсов таких регуляторов отмечают удобство и компактные размеры, максимально долгий срок эксплуатации и возможность проводить калибровку в любое время. В основном их применяют, чтобы контролировать состояние узлов транспортных средств. Помимо этого газомеры цифрового типа включают в состав топливных магистралей.

Помимо регуляторов со стандартными характеристиками и настройками для получения точных данных используются приборы других типов. В этот перечень входят грузопоршневые газомеры, которые представляют собой своеобразные образцы для поверки аналогичных устройств. Их главная рабочая деталь – измеряющая колонка, от состояния и точности показаний которой меняется величина погрешности. Во время работы цилиндр удерживается внутри поршня на нужном уровне, одновременно с одной стороны на него влияют грузы калибровки, с другой только давление.

Жидкостный манометр

Этот тип манометров появился первым еще в XVII веке. Он ведет свое начало от опытов Торричелли — одного из учеников Галилео Галилея.

Итальянский ученый погружал в емкость запаянную с одного конца и наполненную ртутью трубку. Некоторое количество ртути выливалось из трубки, и в ее верхней части получался вакуум. На ртуть в емкости действовало атмосферное давление, а на ртуть в трубке — нет. Соответственно, при повышении атмосферного давления ртутный столбик в трубке поднимался, а при понижении — опускался.

Принцип работы жидкостного манометра в целом похож на принцип работы системы из опыта Торричелли. Этот прибор представляет собой систему сообщающихся сосудов — две трубки, соединенные в U-образную конструкцию. Система наполовину заполнена жидкостью (обычно ртутью), и если на нее действует только атмосферное давление — уровень жидкости в обеих трубках будет одинаков.

Если одну из трубок подключить к накачивающему устройству или к закрытой емкости, на жидкость в ней будет действовать измеряемое давление (Р1). В то время как на жидкость во второй трубке действует только атмосферное давление (Р2). При изменении Р1 уровень жидкости во второй трубке тоже будет меняться.

Измерив разность высоты столба Δh = h1 − h2, можно узнать, насколько изменилось давление ΔP = P1 − P2.

Результат измерений, полученный в сантиметрах ртутного столба, переводят в паскали из расчета:

1 см ртутного столба (при 0°C) = 1333,22 Па.

Для получения результата сразу в паскалях можно воспользоваться формулой, которая определяет давление воды на стенки емкости:

Р = ρgh, где ρ — плотность жидкости, g — ускорение свободного падения, h — высота столба.

Ускорение свободного падения (g) всегда равно 9,8 H/кг.

Интересный факт! Слава изобретателя манометра принадлежит Торричелли, но на самом деле он был придуман на столетие раньше Леонардо да Винчи. Гениальный художник и ученый написал трактат по гидравлике, в котором рассказал о замере давления воды с помощью U-образной системы. Однако этот труд до широкой публики дошел только в XIX веке.

Виды манометров [ править

Читайте также: Как определить машину утопленника

По назначениям манометры можно разделить на технические — общетехнические, электроконтактные, специальные, самопишущие, железнодорожные, виброустойчивые (глицеринозаполненые), судовые и эталонные (аналоговые).

Общетехнические: предназначены для измерения не агрессивных к сплавам меди жидкостей, газов и паров.

Электроконтактные: в конструкции имеют специальные группы электрических контактов (обычно 2). Одна группа контактов соответствует минимальному заданному давлению, вторая группа — максимальному. Величины заданий могут изменяться обслуживающим персоналом. Группа минимального давления может быть включена в электрическую цепь позиционного регулирования или сигнализации минимального давления. Аналогично и группа максимального давления. В некоторых случаях могут быть задействованы обе группы. Как минимальная так и максимальная группы могут быть выведены за минимальное или максимальное (соответственно) значение шкалы манометра и не использоваться. Электроконтактные манометры как правило не должны использоваться в качестве приборов для снятия показаний ввиду того, что показывающая стрелка при механическом взаимодействии с одной из контактных групп может неточно указывать величину давления — возникает заметная погрешность. Особенно популярным прибором этой группы можно назвать ЭКМ 1У, хотя он давно снят с производства. Для работы в условиях возможной загазованности горючими газами необходимо использовать электроконтактные манометры во взрывозащищенном исполнении.

  • кислородные — должны быть обезжирены, так как иногда даже незначительное загрязнение механизма при контакте с чистым кислородом может привести к взрыву. Часто выпускаются в корпусах голубого цвета с обозначением на циферблате О2 (кислород);
  • ацетиленовые — не допускают в изготовлении измерительного механизма сплавов меди, так как при контакте с ацетиленом существует опасность образования взрывоопасной ацетиленистой меди;
  • аммиачные — должны быть коррозионностойкими.

Эталонные: обладая более высоким классом точности (0,15;0,25;0,4), эти приборы служат для проверки и калибровки других манометров. Устанавливаются такие приборы в большинстве случаев на грузопоршневых манометрах или каких-либо других установках, способных развивать нужное давление.

Судовые манометры предназначены для эксплуатации на речном и морском флоте.

Железнодорожные предназначены для эксплуатации на Ж/Д транспорте.

Самопишущие: манометры в корпусе, с механизмом позволяющим воспроизводить на диаграмной бумаге график работы манометра.

Эталонные устройства для измерения давления

Этот тип манометров предназначен для проверки, калибровки и настройки других приборов в целях обеспечения максимально высокой точности измерений. Такие устройства отличаются более высоким классом точности в сравнении с общетехническими. Рабочие эталоны делятся на три разряда.

Контрольные манометры, используемые в целях контроля достоверности показаний измерительных приборов по месту установки, также называют манометрами повышенной точности. Рабочий диапазон измерения от 0-0,6 до 0-1600 бар для газообразных сред.

Манометры для обычных и композитных газовых баллонов должны проходить процедуру поверки не реже одного раза в год, если иные сроки не указываются в документах к прибору. Поверку осуществляют аккредитованные метрологические организации, обладающие статусом юридических лиц. После поверки выдается свидетельство и ставится клеймо.

Прибор необходимо снять с баллона и отнести в метрологическую службу. Там поверители и калибровщики с помощью набора эталонов и вспомогательных приборов на протяжении примерно 10 дней проведут поверку

Передаточные механизмы в эталонных манометрах обрабатываются с повышенной частотой зубчатого зацепления. Они характеризуются минимальным трением в стрелочном механизме, а также высокой чувствительностью внутренних элементов.

Образцовые манометры, с классом точности 0,4 имеют шкалу из 250 единиц, с классом точности 0,15 или 0,25 имеют шкалу из 400 единиц с ценой деления 1 единица. Эксплуатация устройства возможна при различной температуре в зависимости от наполнителя корпуса. Идеальная рабочая температура составляет 20 °С.

Со спецификой проведения заправки газовых баллонов ознакомит следующая статья. Прочитать ее стоит всем владельцам загородной собственности, не подключенной к централизованному газоснабжению.

Температура и кинетическая энергия

Если кинетическая теория применима к газам, то можно ожидать, что давление зависит не только от числа молей в единице объема. Например, масса молекул и скорость их движения также имеют большое значение.

Как известно, волейбольный мяч ударяется в руку игрока с большей силой, чем мяч для настольного тенниса, летящий с той же скоростью. Быстро летящий мяч ударяет сильнее, чем мяч, летящий медленно.

Для того чтобы выяснить, какое значение в кинетической теории имеют масса и скорость молекул, рассмотрим понятие о температуре.

Чтобы измерить температуру газа, мы погружаем в него термометр. Если термометр холоднее, чем система, то определенное количество тепла передается термометру до тех пор, пока газ и термометр не будут иметь одинаковую температуру.

При этом термометр показывает числовое значение температуры. Если термометр нагрет сильнее, чем газ, то определенное количество тепла передается от него системе Если же передачи тепла не происходит, то говорят, что термометр находится в тепловом равновесии

с газом.

Типы термометров

Существует несколько типов термометров. В термометрах можно использовать любое вещество, которое обладает легко измеряемым свойством, чувствительным к изменению температуры. Действие обычного ртутного термометра основано на том, что при повышении температуры жидкость расширяется.

Объем твердых веществ и газов также изменяется в зависимости от температуры. Поэтому и эти вещества можно использовать в термометрах. Если газ поддерживать при постоянном объеме, то с увеличением температуры возрастает давление.

Такой метод наиболее часто используется для измерения температуры: объем газа поддерживают постоянным, при этом давление изменяется в зависимости от температуры.

Измерение температуры газа термометром

Измерим температуру газа А,

приведя его в контакт с газом
Б
(наш термометр). Если эти два газа в начальный момент имеют различные температуры, то произойдет передача тепла.

Тепло от более нагретого газа будет передаваться менее нагретому. Когда передача тепла прекратится, газы достигнут теплового равновесия. Теперь оба газа имеют одинаковую температуру.

То, что при этом происходит, можно представить с помощью кинетической теории газов. Предположим, что температура газа А

выше, чем газа
Б.
Мы объясняем тем, что молекулы газа
А
обладают большей энергией движения по сравнению с энергией движения молекул газа
Б —
молекулы газа
А
имеют более высокую кинетическую энергию (в среднем).

Когда газы соприкасаются, быстро движущиеся молекулы газа А

при соударении могут передавать кинетическую энергию медленно движущимся молекулам
Б.
В результате этого переноса кинетической энергии от газа
А
к газу
Б
повышается температура газа
Б
и понижается температура газа
А.
Когда переход кинетической энергии от одного газа к другому в результате теплового контакта между молекулами газов А

и
Б
заканчивается, эти газы находятся в тепловом равновесии; они имеют одинаковую температуру.

Таким образом, теплообмен между двумя газами мы представляем как переход кинетической энергии. Этот процесс длится до тех пор, пока молекулы обоих газов не приобретут одинаковую

среднюю кинетическую энергию.

Результатом этого является достижение обоими газами одинаковой температуры. Это и есть основная предпосылка кинетической теории: если газы находятся при одной и той же температуре, их молекулы имеют одинаковую среднюю кинетическую энергию.

Манометр с одновитковой трубчатой пружиной

1 — шкала; 2 — стрелка; 3 — ось; 4 — зубчатое колесо; 5 — сектор; 6 — трубка; 7 — тяга; 8 — пружинный волосок; 9 — штуцер

Самопишущий манометр с многовитковой пружиной (рисунок ниже). Пружина выполнена в виде сплюснутой окружности диаметром 30 мм с шестью витками. Вследствие большой длины пружины ее свободный конец может перемещаться на 15 мм (у одновитковых манометров — только на 5-7 мм), угол раскручивания пружины достигает 50-60°. Такое конструктивное исполнение позволяет применять простейшие рычажные передаточные механизмы и осуществлять автоматическую запись показаний с дистанционной передачей. При подключении манометра к измеряемой среде свободный конец пружины рычага будет поворачивать ось, при этом перемещение рычагов и тяги будет передаваться оси. На оси закреплен мостик, который соединен со стрелкой. Изменение давления и перемещение пружины через рычажный механизм передаются стрелке, на конце которой установлено перо для записи измеряемой величины давления. Диаграмма вращается с помощью часового механизма.

Критерии выбора приборов

Оптимальный вариант — регулятор со шкалой от 0 до 10 атм

При подборе устройства нужно учитывать все требования к манометрам, применяемым в газовом хозяйстве. Основным критерием считается измерительный диапазон, в процессе выбора необходимо помнить, что стандартное давление должно укладываться в промежуток от 1/3 до 2/3 по шкале измерения. Идеальным вариантом станет регулятор со шкалой до 0-10 атм. На втором месте по степени важности находится показатель класса точности, показывающий нормальную погрешность результатов замеров во время функционирования прибора.

При желании этот показатель можно рассчитать индивидуально, к примеру если устройство рассчитано на 10 атм, а его класс равен 1.5, показатель погрешности такого газомера составляет 1.5% от общей шкалы. По типу монтирования штуцера манометры бывают радиальными или торцевыми, помимо этого регуляторы дополняются резьбой метрического или трубного типа. Выбирая устройство, нужно учитывать его межповерочный интервал, будет лучше, если он составляет два года.

Приборы бытового назначения могут не проходить поверочную процедуру, но она обязательна для устройств, используемых на заводах, газопроводах, пунктах теплового либо топочного типа, а также аналогичных объектах.

Разновидности систем для измерения давления

Есть много разных манометров для измерения низкого и высокого давления. Но технические характеристики у них разные. Основным отличительным параметром является класс точности. Манометр будет показывать точнее, если значение будет меньше. Самые точные — цифровые устройства.

По своему назначению манометры бывают следующих видов:

  1. Самопишущие. В них находится механизм, который на бумаге позволяет чертить график работы устройства.
  2. Железнодорожные. Применяются в железнодорожном транспорте.
  3. Судовые. Используются на морском и речном судне.
  4. Эталонные. У них высокий класс точности. Именно поэтому их применяют для испытаний, регулировки и проверки прочих измерительных приборов давления.
  5. Специальные. Используются для измерения величины разнообразных газов. В зависимости от того, для какого газа они предназначаются, имеют разные цвета корпуса и маркировочные буквы: для измерения горючих газов — красные, для негорючих — чёрные, жёлтые аммиачные (А), белые ацетиленовые (Ац), голубые кислородные (К).
  6. Электроконтактные. В них имеется электросигнализация, которая позволяет регулировать измеряемую среду. Эти приборы подразделяются на два типа: на основе электроконтактной приставки и с микровыключателями.
  7. Общетехнические. Предназначены для измерения давления в различных средах. Ими можно мерить избыточные и вакуумметрические давления.

По принципу работы выделяют такие типы:

  • Пьезоэлектрические. Основываются на пьезоэффекте. В кристалле кварца появляется заряд при механическом воздействии.
  • Деформационные. Основываются на деформации чувствительного элемента (мембраны, сильфона, пружины и прочих), который при деформации действует на стрелку.
  • Жидкостные. Их основой является трубка, заполненная жидкостью. Они могут быть двух видов: с одной или двумя трубками. Приборы с двумя трубками используются для того, чтобы в разных средах сравнивать давление.
  • Поршневые. Они состоят из цилиндра, внутрь которого вставлен поршень.

Какими приборами измеряется давление газа

Все приборы, измеряющие давление, классифицируются по нескольким критериям:
По роду измеряемого давления: манометры, вакууметры, мановакуумметры, напоромеры, микроманометры, тягомеры, тягонапоромеры, барометры, дифманометры.

Манометры — это приборы, служащие для измерения избыточного либо абсолютного давления (разности давлений). «Ноль» манометра избыточного давления находится на уровне атмосферного давления воздуха.

Вакуумметры нашли применение для измерения давления разреженных газов.

Мановакуумметр позволяет определять избыточное давление и разрежение газа.

Напоромерами измеряют небольшое избыточное давление (не более 40кПа), тягомерами — небольшое вакуумметрическое.

Дифманометры определяют разность давлений в двух точках.

Микроманометры — дифманометры для определения малых разностей давлений.

Барометрами определяют атмосферное давление воздуха.

По принципу действия : жидкостные, деформационные (пружинные, сильфонные, мембранные), грузопоршневые, электрические и другие приборы.

Жидкостные манометры состоят из сообщающихся сосудов, давление определяется по одному либо нескольким уровням. У деформационных манометров давление определяется по деформации или упругой силе деформирующегося элемента – пружины, мембраны, сильфона. В грузопоршневых манометрах искомое значение давления определяется путем уравновешивания массы грузов и поршня. Электрические манометры работают на первичных преобразователях давления.

По назначению: общетехнические для измерения давления в технологических процессах и эталонные для поверки.

По классу точности : от 0,4 до 4,0. Этот показатель характеризует погрешность измерения прибора.

По особенностям измеряемой среды : общетехнические, коррозионно-стойкие, виброустойчивые, специальные, кислородные, газовые.

Специальные манометры применяются для вязких и кристаллизующихся веществ, а также таких веществ, которые содержат твердые частицы.

Помимо вышеперечисленного приборы для измерения давления отличаются по пределу (диапазону) измерений, степени защиты от воды (восемь степеней), по виду защиты от внешних предметов (шесть степеней), по степени устойчивости к вибрациям, по степени устойчивости к влажности и температуре (11 групп).

Манометры и мановакуумметры рассчитаны на то, чтобы выдерживать кратковременную перегрузку.

На циферблате прибора маркируется разметка шкалы, единицы измерения давления, знак минуса для вакуумметрического давления, монтажное положение прибора, класс точности, наименование/обозначение среды, знак Госреестра, товарный знак завода-изготовителя.

Примеры использования электроконтактных манометров в электрических схемах смотрите здесь: Автоматизация насосов и насосных станций

Во многих технологических процессах давление является одним из основных параметров, определяющих их протекание. К ним относятся: давление в автоклавах и пропарочных камерах, давление воздуха в технологических трубопроводах и т. п.

Требования к манометрам

Цвет корпуса указывает на тип измеряемого газа: желтый – аммиак, голубой – кислород, черный – негорючие, красный – горючие

Точные показатели, в соответствии с которыми устройство проводит замеры, напрямую зависит от правильности его подбора и монтажа в сочетании с эксплуатационными условиями. При подборе нужно учитывать физические и химические свойства измерительной среды и предполагаемые данные по давлению. Например, для условий с высоким содержанием агрессивных газов, лучше приобретать специальные приборы, изготовленные из прочных материалов. Диаметр стекла манометра должен быть не меньше 10 или 16 см, если его размещают на дистанции от 2 до 3 метров.

Устройства, применяемые в газовых средах, имеют различные оттенки корпуса, к примеру, голубой указывает на работу с кислородом, желтый с аммиаком, красный и черный подходят для горючих и негорючих газов соответственно. По правилам безопасности не рекомендуется пользоваться манометрами с истекшим сроком поверки, а также при отсутствии пломбы или отметки о проведении этой процедуры. Если стрелка прибора не возвращается к нулевому показателю после отключения, он тоже считается нерабочим.

Любые повреждения, например, деформации корпуса или разбитое стекло, указывают на то, что регулятор нужно менять, поскольку они напрямую влияют на точность работы измерителя.

Абсолютная температура

Количественные соотношения между температурой и объемом газов впервые изучал французский ученый Жак Шарль в 1787 г. Он нашел, что первоначальные объемы всех газов при их нагревании в одном и том же интервале температур увеличиваются в одинаковой степени.

(В этих опытах давление сохранялось постоянным.) Эти соотношения выводятся на основании простого опыта. В узкую стеклянную трубку длиной 0,5 м,

запаянную с одного конца, помещают каплю ртути.

Эта капля удерживается воздухом на некоторой высоте. Поскольку трубка имеет равномерное сечение, мы можем принять высоту слоя воздуха до капли ртути за меру его объема.

Ртутная пробка может перемещаться вверх или вниз, благодаря чему в трубке сохраняется постоянное давление.

Мы можем поместить трубку в ледяную воду (0° С) и измерить относительный объем воздуха. Если трубку перенести в кипящую воду (100° С при 1 атм),

то относительный объем увеличится.

По результатам этих измерений и результатам аналогичных измерений, полученным для других температур, можно составить приведенную ниже таблицу 1.

Таблица 1
Температура,

°
С

Относительный объем (измеренный по высоте слоя воздуха)
200 1,73
100 1,37
50 1,18
0 1,00

Если мы отложим значения относительного объема на оси ординат (вертикальная ось), а температуру на оси абсцисс (горизонтальная ось), то получим график, изображенный на рис. 3.

Через экспериментальные точки проходит прямая линия. Если продолжить прямую линию вверх, то можно видеть, что объем воздуха при 273° С вдвое больше, чем при 0° С.

Если продолжить эту линию вниз, то получается, что объем становится равным нулю при.—273°С. Изменение объема при изменении температуры на 1°С составляет 1/273 объема при 0° С. В действительности все газы сжижаются еще до того, как их температура достигнет —273° С.

Если газ нагревать или охлаждать при постоянном объеме, то его давление тоже изменяется на 1/273 давления при 0° С. Давление газа становится равным нулю при —273° С. Согласно кинетической теории, при этой температуре движение молекул прекращается. Кинетическая энергия становится равной нулю.

Абсолютная шкала температур

Абсолютная шкала

температур обладает тем преимуществом, что ее нуль соответствует —273° С. В то время как «нуль» стоградусной шкалы выбран произвольно (температура плавления льда), нулевая точка абсолютной шкалы имеет определенный смысл в кинетической теории.

Если мы выражаем температуры в абсолютных градусах, то при этом объем определенного количества газа (при постоянном давлении) прямо пропорционален температуре.

В соответствии с кинетической теорией кинетическая энергия молекул прямо пропорциональна абсолютной температуре. По этой причине мы часто выражаем температуру по абсолютной шкале.

Эта шкала температур, имеющая такую же единицу измерения (градус), что и стоградусная шкала, называется шкалой Кельвина.

Температура по этой шкале выражается в градусах Кельвина (° К). На рис. 4-5 приведены значения температуры, выраженные в градусах Кельвина и по стоградусной шкале — в градусах Цельсия.

Все числовые значения по шкале Кельвина на 273 градуса выше, чем соответствующие температуры, выраженные в градусах Цельсия.

Упражнение для самообразования

а) Выразите следующие температуры в градусах Кельвина:

Температура кипения воды 100°С Температура замерзания ртути 38,9°С Температура кипения жидкого, азота —196°С

б) Выразите следующие температуры в градусах Цельсия:

Температура плавления свинца 600 °К Комнатная температура 298 °К Температура кипения жидкого гелия 4°К.

2) При реакции 2,0 • 10-3 моля металлического магния Mg с соляной кислотой НСl выделяется газообразный водород, который при 25° С и давлении 1 атм

занимает объем 49,0
мл.
а) При реакции 1 моля магния с соляной кислотой выделяется 1 моль водорода. Вычислите объем 1 моля водорода при 25° С (298° К) и давлении 1 атм.

б) Вычислите объем 1 моля водорода при 0° С (273° К) и давлении 1 атм.

Как указывалось выше, при температуре 0° К всякое движение молекул прекращается. Кинетическая энергия становится равной нулю.

При температурах, близких к 0° К, наблюдаются очень интересные явления (например, сверхпроводимость многих металлов и сверхтекучесть жидкого гелия). В связи с этим ученые весьма заинтересованы в достижении температур, как можно более близких к абсолютному нулю.

Для охлаждения очень часто используют жидкий водород (кипящий при 20° К) и жидкий гелий (кипящий при 4° К). При пониженном давлении гелий кипит при еще более низкой температуре, и это обеспечивает достижение температур, близких к 1° К.

Разработаны другие более сложные методы, с помощью которых может быть достигнута температура до 0,001° К. Однако в этих условиях термометрия становится такой же трудной, как и сам метод достижения низких температур.

Давление газа в газопроводе дома

Газопроводом называют движение газа по трубам с места его хранения до пользователя. Газопроводы могут быть наземного, подземного, наводного или подводного вида. Газопровод подразделяется на различные категории, которые определяются давление газа. Чтобы обеспечить поселки, и города, давление может быть невысоким до 0,05 кгс/см2, средним – до 3 кгс/см2 или высоким до 6 кгс/см2. Очень высокий показатель считается до 12 кгс/см2 Уровень давления зависит от предназначения данного участка газопровода, самое большое давление в главной магистрали, а наименьшее – внутри жилого помещения. Для газопровода есть специальный ГОСТ, которому необходимо соответствовать. Участки с высоким давлением предназначаются для предприятий промышленного вида или подачи газа между городами. Давление низкого или среднего показателя предназначено для обычного пользователя, для жилого дома подается обычно 0,05 кгс/см2.

Общая информация о давлении

Поддерживаемое давление газа зависит от назначения трубопровода

По определению давление – физическая величина, равная силе, которая действует на единицу площади под 90° к поверхности. Так как голубое топливо передается по трубопроводам, здесь условной поверхностью выступает площадь сечения трубы, а напор определяет скорость перемещения вещества.

Давление на разных участках газопровода от месторождения до форсунки в газовом котле поддерживается разное.

Виды давления

Напор в трубах жестко нормируется. Если в магистральной трубе величина слишком мала, переместить газ к другой станции попросту не удастся. Если давление в домовой сети будет слишком велико, на конечном пункте – горелке, газовую смесь не удастся смешать с кислородом в нужной пропорции, чтобы поддерживать горение, а не спровоцировать взрыв.

По величине напора классифицируют газопроводы. А так как он поддерживается постоянно, газ «связывают» с этой величиной.

Различают магистральные и распределительные газопроводы.


Магистральный


Распределительный

Магистральные – по такому трубопроводу газовую смесь передают на большие расстояния. С определенной частотой здесь установлены газокомпрессорные станции, которые поддерживают необходимый уровень. Конечным пунктом для магистрали служит местная распределительная станция. По уровню напора различают 2 вида:

  • магистральные сети 1 класса – с рабочим давлением от 2,5 до 11,8 МПа включительно;
  • 2 класса – поддерживается по нормативу 1,2–2,5 МПа.

Распределительные – по трубопроводу газ доставляют от станций к конечному потребителю – внутридомовым сетям. Различают:

  • 1 категория – бытовой газ передается под давлением от 0,6 до 1,2 МПа;
  • категория 1а – более 1,2 МПа;
  • 2 категория – 0,3–0,6 МПа.

Жилые дома традиционно оборудуются сетями самого низкого давления. Однако с появлением газовых котлов ситуация несколько изменилась. Чтобы удовлетворить потребность в газе, к жилым многоэтажным домам подводят газопровод со средними показателями.

Единицы измерения


Измеряется давление самым разным образом. Но если речь идет о газовой линии, чаще всего используются следующие варианты:

  • 1 мм. рт. ст – эта единица очень наглядна, особенно когда используют для измерения жидкостный манометр.
  • 1 атм – единица измерения более традиционная. Первой величиной, которую можно было с чем-то сравнивать, было атмосферное давление. Величина, высчитываемая от абсолютного нуля, носит название абсолютная. Отсюда, избыточное давление равно разнице между абсолютной и атмосферной величиной. При изменении разряжения определяют, насколько уровень в некотором ограниченном объеме – трубопроводе – меньше атмосферного. Эту величину называют вакуумметрическим давлением. При ремонте или обследовании внутридомовых сетей измеряют вакуумметрическое в системе удаления дыма, и избыточное давление – в газопроводе.
  • 1 бар – единица, более распространенная в Европе. 1 бар равен 100000 Па.
  • 1 Па – единица измерения принятая в системе СИ. Неудобна тем, что слишком мала – всего 1 ньютон на 1 м². При обследовании газопроводов используют большую единицу – 1 МПа, равный 1000000 Па(паскалей).

Добыча газа


В недрах земли газ находится в микротрещинах под большим давлением. Естественное движение метана происходит по определенным закономерностям. Газ залегает в земной коре на расстоянии 1-6 км от поверхности, поэтому сначала проводят геологоразведочные работы. Глубоко в недрах планеты есть поры и трещины очень малых размеров, которые содержат в себе газ. Механизм естественного перемещения газа прост: метан вытесняется из пор с высоким давлением в поры с более низким давлением. По всей площади месторождения равномерно устанавливают скважины. Так как давление под землей во много раз больше атмосферного, газ сам выходит в скважину.

Подготовка и транспортировка

Газ не сразу пускают по трубопроводу, сначала его особым образом подготавливают в котельнях, ТЭЦ и на химических заводах. Осушают от водяного пара и очищают от примесей: сероводорода (вызывает коррозию труб), водяного пара (вызывает конденсат, мешает движению газа). Подготавливают и трубопровод: с помощью азота в нем создают инертную среду. Далее газ движется по большим трубам диаметром 1,5 м (под давлением 75 атмосфер). Так как при транспортировании потенциальная энергия газа тратится на силы трения между частицами самого газа и на трение между трубой и метаном, существуют компрессорные станции, поднимающие давление внутри трубы до 120 атмосфер. Подземные газопроводы укладывают на глубине 1,5 м, чтобы конструкция не замерзала.

Определение величины давления

Давление

– это величина, характеризующая действие силы на единицу поверхности.

При определении величины давления принято различать давление абсолютное, атмосферное, избыточное и вакуумметрическое.

Абсолютное давление (ра)

– это давление внутри какой-либо системы, под которым находится газ, пар или жидкость, отсчитываемое от абсолютного нуля.

Атмосферное давление (рв)

создается массой воздушного столба земной атмосферы. Оно имеет переменную величину, зависящую от высоты местности над уровнем моря, географической широты и метеорологических условий.

Избыточное давление

определяется разностью между абсолютным давлением (ра) и атмосферным давлением (рв):

Вакуум (разрежение)

– это такое состояние газа, при котором его давление меньше атмосферного. Количественно вакуумметрическое давление определяется разностью между атмосферным давлением и абсолютным давлением внутри вакуумной системы:

При измерении давления в движущихся средах под понятием давления понимают статическое и динамическое давление.

Статическое давление (рст)

– это давление, зависящее от запаса потенциальной энергии газовой или жидкостной среды; определяется статическим напором. Оно может быть избыточным или вакуумметрическим, в частном случае может быть равно атмосферному.

Динамическое давление (рд)

– это давление, обусловленное скоростью движения потока газа или жидкости.

Полное давление (рп)

движущейся среды слагается из статического (рст) и динамического (рд) давлений:

Виды измерительных приборов

Приборы для измерения давления подразделяются на такие разновидности:

  • Тягонапоромеры — это мановакуумметр, который имеет крайние пределы измерения не выше 40 кПа.
  • Тягомеры — вакуумметр, который имеет предел измерения равный (-40) кПа.
  • Напорометр — это манометр малого избыточного давления (+40) кПа.
  • Мановакуумметры — это устройства, которые способны измерять как вакуумметрическое, так и избыточное давление в пределах 60−240000 кПа.
  • Вакуумметр — устройство, измеряющее разрежение (давление, которое ниже атмосферного).
  • Манометр — устройство, которое способно измерять избыточное давление, то есть разность между абсолютным давлением и барометрическим. Его пределы колеблются от 0,06 до 1000 МПа.

Большинство импортных и отечественных манометров изготавливаются по всем общепринятым стандартам. Именно по этой причине существует возможность замены одной марки на другую.

При выборе прибора необходимо опираться на такие показатели:

  • Расположение штуцера — осевое или радиальное.
  • Диаметр резьбы штуцера.
  • Класс точности прибора.
  • Диаметр корпуса.
  • Предел измеряемых значений.

Поверка

осуществляется по документу МРБ МП.2136-2011 «Методика поверки. Измеритель давления газа ФД-09», утвержденному РУП «БелГИМ» 8 апреля 2011 г.

Основные средства поверки:

1 Калибратор давления DPI 705, диапазон измерений от 0 до 20 кПа, погрешность ±0,1 % ВПИ.

2 Манометр избыточного давления, показывающий МП2-УУ2, диапазон измерений от 0 до 100 кПа, класс точности 2,5.

3 Источник давления.

4 Шланг соединительный полихлорвиниловый ПХВ-3,5х0,8.

5 Устройство коммутации ПР 11-02.00.000.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на измеритель давления газа ФД-09 в соответствии с рисунком 2.

Классификация по функционалу

Калибровка аналоговых манометров

По своему назначению манометр для газа высокого либо низкого давления бывает общетехническим, эталонным или специальным.

Общетехнические

Подобные приборы помогают измерять показатели максимального и вакуумметрического давления и применяются чаще всего на производстве, в том числе в процессе технологических работ. Они подходят для проведения измерений в газообразных средах, причем они должны быть неагрессивными для сплавов из меди при температурном режиме до 150 градусов. Эти устройства выдерживают вибрационные колебания с пределами от 10 до 55 Гц, амплитуду до 0,15 мм, класс точности у них варьируется от 1 до 2,5.

Эталонные

Приборы этого типа разработаны с целью тестирования, настраивания и калибровки прочих устройств для обеспечения максимально точных замеров. Подобные манометры для измерения давления газа разделяют на три категории, их перечень включает контрольные и образцовые регуляторы, а также их аналоги, предназначенные для обыкновенных и композитных баллонов. Газомеры первого типа применяются чаще всего и помогают контролировать достоверность данных приборов в местах установки, их рабочий предел колеблется в промежутке от 0,06 до 1600 бар.

Специальные

Специальные регуляторы создают под конкретный тип газа, а также среду, образуемую им. Корпусы таких устройств красят в разнообразные цвета с учетом типа вещества, для которых они предназначены. Манометры такого назначения делают из прочных материалов, способных выдерживать воздействие газообразных сред. Они считаются наиболее распространенными и отличаются простой конструкцией.

Идеальный газ

Это газ, который ведет себя так, как будто между его молекулами не существует никакого взаимодействия, называется идеальным газом.

Экспериментальные данные о давлении и объеме длякислорода, аммиака и хлористого водорода. В каждом случае в пределах ошибки опыта наблюдается определенная закономерность: PV =

const.

Многочисленные опыты подтвердили, что большинство газов подчиняется этой простой закономерности. Из этого общего правила есть и исключения, как и в случае других научных утверждений.

Любое правило выводится на основании ряда измерений, каждое из которых допускает некоторую неточность, поэтому постоянство PV

установлено только в определенных пределах ошибки. Более того, существуют пределы давления, в которых можно изучать поведение газов.

Пример идеального газа

Например, рассмотрим данные для 17,0 г

аммиака при 0° С, . По этим данным
PV
= 24,5, но для этой величины должны быть учтены ошибки измерения и пределы применимости этих данных. В этом случае ошибка равна ±0,7, а пределы давления составляют 0,2—2
атм.
На основании этих данных можно сделать вывод, что произведение объема и давления — постоянная величина, выраженная четырьмя цифрами: PV

= 24,50. Однако нельзя сказать с полной уверенностью, что это произведение будет постоянным за пределами 0,2—2
атм,
установленными для давления.

Напомним, что правило справедливо лишь в тех пределах, в которых проводились опыты.

Если требуется более высокая точность измерений давления и объема при более высоком давлении, то необходимо проводить дополнительные опыты. В приведены результаты таких более точных измерений давления и объема.

Наиболее поразительным в табл. 2 является значительное отклонение от PV

= 24,5, наблюдаемое при давлении выше 9,800
атм.
Соотношение
PV
= const больше не соблюдается. Это показывает, насколько осторожно нужно производить экстраполяцию полученных данных за установленные пределы.

Даже при более низком давлении, чем давление, при котором происходит конденсация, произведение давления и объема не совсем постоянно.

Проводя измерения с достаточной тщательностью и точностью, мы убеждаемся, что произведение PV

для аммиака при 25° С не является постоянным. Оно изменяется от 24,45 при 0,1000
атм
до 23,10 при 9,800
атм,
когда уже начинается конденсация.

Подобные измерения с 28,0 г

окиси углерода при 0° С показывают, что произведение
PV
равно 22,410 при 0,2500
апгм,
но при давлении 4,000
атм
это произведение становится равным 22,308. Такой тип отклонения от постоянной величины является общим для всех газов.

В результате тщательных измерений установлено, что ни для одного газа

не соблюдается идеально соотношение
PV
= const при всех давлениях. С другой стороны,
все газы
подчиняются этому правилу приблизительно, и соответствие улучшается при уменьшении давления.

Таким образом, мы нашли, что при понижении давления каждый газ приближается

к идеальному газу, для которого
PV =
const.

Объяснение образования идеального газа

Для отклонения от правила имеется разумное объяснение. Кинетическая теория, «объясняющая» поведение газа, основана на предположении, что между частицами газа не существует взаимодействия. Но реальные молекулы взаимодействуют

друг с другом!

Конденсация любого газа при охлаждении показывает, что между частицами действуют силы притяжения. Эти силы не имеют существенного значения, когда молекулы находятся далеко друг от друга (т. е. при низких давлениях), но они становятся заметными при более высоких давлениях.

Теперь мы убедились, что кинетическая теория справедлива для «идеализированного» газа, т. е. для газа, в котором отсутствует взаимодействие между молекулами.

Каждый реальный газ приближается к такому идеальному поведению при достаточно низком давлении. В этих условиях молекулы в среднем настолько удалены друг от друга, что силы притяжения незначительны.

Давление и объем аммиака

Результаты точных измерений давления и объема для 17.0 г аммиака при 25°С Таблица

2

Давление, атмОбъем, лPV
0,1000244,524,45
0,2000122,224,44
0,400061,0224,41
0,800030,4424,35
2,00012,1724,34
4,0005,97523,90
8,0002,92523,40
9,8002,36023,10а
9,8000,0200,20б
20,000,0200,40в
50,000,0201,0в

а Начинается конденсация.

б Газа не остается, только жидкость.

в Жидкость.

Молярные объемы газов

Молярные объемы некоторых газов при температуре 0°С и давлении 1 атм Таблица 3

ГазФормулаМолекулярный вес, гМолярный объем, л
ВодородН22,016022,430
ГелийНе4,00322,426
(«Идеальный» газ)(22,414)
АзотN228,01622,402
Окись углеродаСО28,01122,402
КислородО232,00022,393
МетанCH416,04322,360
Двуокись углеродаСО244,01122,262
Хлористый водородHCl36,46522,248
АммиакNH317,03222,094
ХлорСl270,91422,063
Двуокись серыSO264,06621,888

Закон Авогадро согласуется с кинетической теорией. Следовательно, идеальный газ подчиняется закону Авогадро. При 0° С и давлении 1 апгм

1 моль (6,02•1023 молекул) идеального газа занимает объем 22,414
л.
Насколько близко реальные газы приближаются к идеальному газу при 0° С и 1 атм,

показывают измерения
молярного объема — объема, занимаемого 1 молем этого газа.
В табл. 3 приведены молярные объемы некоторых газов.

Реальные газы при 0° С и 1 атм

близки к идеальному газу (до трех значащих цифр). Каждый газ становится идеальным при уменьшении давления до нуля.

Что такое манометр, для чего используется

Манометр – это профессиональное устройство, которое создано для того, чтобы была возможность точного измерения давления газа и жидкости. Манометры бывают самых различных видов, в частности, они бывают низкого давления и высокого. Обычно это устройство помещено в небольшой корпус для того, чтобы было удобно им пользоваться. Наука пошла вперед, и уже сейчас имеются и сложные манометры, которые имеют в своем составе еще и температурную шкалу – термометры, вакуумметры – имеют вакуумные манометры. Которые предназначены для того, чтобы измерять давление тех газов, которые разряжены. Самое чем оснащено это устройство – это датчики давления, они и помогают измерить его.

Такие устройства необходимы в самых разных научных областях и технических. Их применяют при изучении процессов физики, которые наблюдаются в природе, или для измерения технологических процессов, которые созданы человеком. Стоит иметь в виду, что эти устройства отличаются по классу точности. Так, например, есть класс точности 0,2, 0,6, 1,0, 2,5, 4,0. При этом, чем цифра меньше, тем и точность устройства, следовательно, меньше.

Важно отметить, что манометр находит свое применение и в теплоэнергетике, а также же на химических организациях, и тех, которые связаны с нефтехимией. Интересно, что его применяют и в пищевой отрасли, ведь именно здесь очень важно знать давление и регулировать его состояние.

Конечно, такое распространенное и нужное устройство делится на разные виды. Итак, существуют манометры:

  • технические;
  • специальные;
  • электроконтактные;
  • общетехнические.

Устройства также делятся исходя из назначения. Бывают манометры:

  • специальные;
  • судовые;
  • самопишущие;
  • виброустойчивые;
  • электроконтактные и другие.

Итак, рассмотри каждый по отдельности, чтобы детальнее разобраться какой манометр, где удобнее и лучше применять. Первый вид – общетехнические. Такие устройства могут измерять в разных сферах, даже избыточных и вакуумных. Такие устройства используют в частности для того, чтобы мерять давление в ходе процесса производства в промышленных оборудованиях непосредственно в их рабочих точках. Такие манометры устойчивы к вибрациям. Их применяют в газоснабжении, в механизмах и машинах, в теплоснабжении, в технологических системах.

Например, электроконтактные манометры могут регулировать измеряемую среду, и делают они это за счет наличия электроконтактного организма. Ими можно измерять давление жидкости, пара, газа и другое. Еще один вид – специальные манометры – для того, чтобы ими измеряли различные газы, такие как аммиак, кислород, водород, ацетилет. Важно знать, что для каждого газа – свой манометр, об этом свидетельствует специальный цвет на корпусе устройства.

Образцовые манометры созданы для испытаний, калибровки давления и для того, чтобы точно измерять избыток давления газа и жидкости. А вот судовые манометры эксплуатируют на речном и морском флоте.

По типам манометры тоже различаются на несколько видов. Так, например, жидкостные устройства применяют в лабораторных условиях. Давление здесь измеряется с помощью уравновешивания веса жидкости его столба, а мера давления здесь – измерения количества жидкости в сосудах сообщающихся. Также существуют поршневые манометры, деформационные, пружинные, трубчатые, мембранные и сильфонные. Все они отличаются способом применения. У нас Вы сможете найти различные манометры, которые помогут Вам измерять и контролировать давление воды и газа.

Артериальное давление

Еще один пример, где мы сталкиваемся с давлением в повседневной жизни – это измерение кровяного давления.

Артериальное давление – это кровяное давление, т.е. давление, которое кровь оказывает на стенки сосудов, в данном случае – артерий.

Если вы измерили артериальное давление и оно у вас 120 на 80, то все хорошо. Если 90 на 50 или 240 на 180, то вам уже точно будет неинтересно разбираться, в чем это давление измеряется и что это вообще значит.

Артериальное давление — давление крови на стенки артерий

Тем не менее, возникает вопрос: 120 на 80 чего именно? Паскалей, миллиметров ртутного столба, атмосфер или еще каких-то единиц измерения?

Артериальное давление измеряется в миллиметрах ртутного столба. Оно определяет превышение давления жидкости в кровеносной системе над атмосферным давлением.

Кровь оказывает давление на сосуды и тем самым компенсирует действие атмосферного давления. Будь иначе, нас бы просто раздавило огромной массой воздуха над нами.

Но почему в измерении артериального давления две цифры?

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Дело в том, что кровь движется в сосудах не равномерно, а толчками. Первая цифра (120) называется систолическим давлением. Это давление на стенки сосудов в момент сокращения сердечной мышцы, его величина – наибольшая. Вторая цифра (80) определяет наименьшее значение и называется диастолическим давлением.

При измерении фиксируются значения систолического и диастолического давлений. Например, для здорового человека типичное значение артериального давления составляет 120 на 80 миллиметров ртутного столба. Это означает, что систолическое давление равно 120 мм. рт. ст., а диастолическое – 80 мм рт. ст. Разница между систолическим и диастолическим давлениями называется пульсовым давлением.

Источник

Деление по функциональному назначению

По назначению выделяют следующие виды манометров, используемых для измерения давления газа:

Рассмотрим особенности каждого вида.

Манометры общетехнического назначения

Этот вид манометров производят с целью измерения значений вакуумметрического и избыточного давления в общетехнических целях. Различные модификации устройств позволяют использовать их в самых разнообразных средах. Применяются для измерения давления на производстве прямо во время технологических процессов.

Такими манометрами можно измерять давление газообразных сред, которые являются неагрессивными по отношению к медным сплавам при рабочей температуре до 150 °C. Обычно корпус изделия изготавливается из стали, а детали механизма из латунного сплава.

Общетехнические манометры для газа низкого или высокого давления производятся устойчивыми к вибрациям с частотой в интервале от 10 до 55 Гц, а также амплитудой смещения максимум 0,15 миллиметра. Имеют несколько классов точности от 1 до 2,5.

Набирают популярность газовые манометры общетехнического назначения с электронной платой, на которой отображаются данные проведенных измерений. Они нередко оснащаются преобразователями, что автоматизирует технологические процессы. Значения давления отображаются на электронном циферблате.

Группа специальных манометров

Такие приборы изготавливаются под конкретный вид газа и создаваемую им среду. Для систем с повышенным давлением изготавливают манометры для газа высокого давления. Некоторые газы агрессивны по отношению к определенным сплавам, поэтому для работы с ними требуется использовать устойчивые материалы.

Специальные манометры окрашивают в краски различных цветов в зависимости от типа газа.

Пропановые манометры окрашиваются в красный цвет, имеют стальной корпус и характеристики общетехнических манометров. Рабочее давление таких приборов от 0 до 0,6 МПа. Это стандартное давление пропана. Возможна эксплуатация в диапазоне температур от – 50 до + 60 °С. Температура рабочей среды до + 150 °С. Нередко входят в комплектацию с баллонными редукторами.

Измерители давления аммиака в баллонах и прочих резервуарах окрашиваются в желтый цвет. Агрегаты с многоступенчатым сжатием оснащаются температурной шкалой. Компоненты манометра изготавливаются из материалов, устойчивых к воздействию паров аммиака.

Ацетиленовый манометр окрашивается в белый цвет. Изготавливается как манометр систем безопасности из обезжиренных материалов. Используется для измерения избыточного давления в различных распределяющих и генерирующих ацетилен системах. Корпус изготавливается из стали, внутренние компоненты из латунного сплава. Диапазон допустимых температур от – 40 до + 70 °С.

Водородный манометр окрашивается в темно-зеленый цвет. Манометр для иных горючих газов красится в красный цвет. Измерительный прибор для негорючих смесей красят в черный цвет. Кислородный манометр окрашивают в голубой цвет.

Эталонные устройства для измерения давления

Этот тип манометров предназначен для проверки, калибровки и настройки других приборов в целях обеспечения максимально высокой точности измерений. Такие устройства отличаются более высоким классом точности в сравнении с общетехническими. Рабочие эталоны делятся на три разряда.

Контрольные манометры, используемые в целях контроля достоверности показаний измерительных приборов по месту установки, также называют манометрами повышенной точности. Рабочий диапазон измерения от 0-0,6 до 0-1600 бар для газообразных сред.

Манометры для обычных и композитных газовых баллонов должны проходить процедуру поверки не реже одного раза в год, если иные сроки не указываются в документах к прибору. Поверку осуществляют аккредитованные метрологические организации, обладающие статусом юридических лиц. После поверки выдается свидетельство и ставится клеймо.

Передаточные механизмы в эталонных манометрах обрабатываются с повышенной частотой зубчатого зацепления. Они характеризуются минимальным трением в стрелочном механизме, а также высокой чувствительностью внутренних элементов.

Образцовые манометры, с классом точности 0,4 имеют шкалу из 250 единиц, с классом точности 0,15 или 0,25 имеют шкалу из 400 единиц с ценой деления 1 единица. Эксплуатация устройства возможна при различной температуре в зависимости от наполнителя корпуса. Идеальная рабочая температура составляет 20 °С.

Со спецификой проведения заправки газовых баллонов ознакомит следующая статья. Прочитать ее стоит всем владельцам загородной собственности, не подключенной к централизованному газоснабжению.

10.4. Измерение давления газа . Часть 1

P = F/S

где F-сила, ньютон, Н; S- площадь, m2.

Единица 1 Н/м2 = 1 Па, а 1 атм = 101325 Па, внесистемная единица давления «бар» равна 105 Па.Для измерения давления широко применяют ртутные и водяные манометры. С ними связаны еще две единицы измерения давления: миллиметр ртутного столба, сокращенно — мм рт. ст., или торр, и миллиметр водяного столбе сокращенно — мм вод. ст., или мм Н2O.

Обозначение единицы давления «торр» связано с именем Торричелли, Эванджелиста (1608 — 1647) — итальянского физика и математика, ученика Г. Галлилея. Торричелли впервые изобрел ртутный барометр. Единица давления 1 торр равна гидростатическому давлению столба ртути высотой 1 мм на плоское основание при 0 °С. Единица давления 1 мм вол. ст. равна гидростатическому давлению столба воды высотой 1 мм на плоское основание при +4 °с

Соотношения между единицами измерения давления: 1 торр = 133,322 Па 1 атм = 760 торр, 1 торр = 13,5951 мм вод. ст., 1 мм вод. ст. = 9,807 Па = 7,678-10-2 торр.

Для измерения давления применяют жидкостные, мембранные, пружинные, тепловые и электрические манометры различных конструкций с использованием простых и сложных электронных и оптических схем.

Манометры, предназначенные для измерения атмосферного давления, называют барометрами (от греч. baros — тяжесть и metreo — измеряю), для измерения давления ниже атмосферного — вакуумметрами, а для измерения разности двух давлений ни одно из которых не является атмосферным, — дифманотрами, или дифференциальными манометрами.

Жидкостные манометры. Жидкостные манометры — самые простые и точные приборы для измерения давления. В таком приборе измеряемое давление (или вакуум) либо разность давлений уравновешиваются давлением столба манометрической жидкости, заполняющей прибор. Диапазон измерения давления жидкостными манометрами — от 10-4 до 105 Па (или от 10-6 до 760 торр).

Жидкостные манометры делят на две большие группы: барометры и вакуумметры. Их применяют в основном для определения давления в лабораторных условиях и для проверки других манометров.

Манометрической жидкостью в жидкостных манометрах чаще всего является ртуть, а при малых диапазонах измерения давления — вода, этанол, толуол, силиконовое масло.

Ртуть в обычных условиях имеет очень небольшое давление пара и обладает неизмеримо малой способностью растворять газы.

Рис. 241. Ртутный барометр (в). Высота мениска (б). U-образный барометр с отрытым коленом (в) и U-образный дифбарометр (г)

Однако высокое поверхностное натяжение ртути приводит к тому, что ее мениск даже в достаточно широких трубках имеет выпуклый вид. Обусловленная этим явлением погрешность измерений для манометрических трубок с внутренним диаметром 8 мм составляет около минус 0,07 мм, а при диаметре 16 мм -примерно минус 0,01 мм.

Ртутные барометры делят на чашечные с вертикальным расположением барометрической трубки, U-образные и на приборы с наклонной барометрической трубкой.

В первом типе приборов чашка 5 (рис. 241,а), наполненная ртутью, непосредственно сообщается с атмосферой через защитный патрон 6, а барометрическая трубка 3 имеет запаянный конец и снабжена наружной шкалой 1 с подвижной шкалой-нониусом 4, позволяющей измерять положение мениска ртути с погрешностью ±0,1 мм. Положение мениска ртути и определяет внешнее атмосферное давление в мм рт. ст. Защитный патрон 6 служит для предотвращения попадания пыли на открытую поверхность ртути в сосуде 5. Он содержит активированный уголь, пропитанный иодом, и закрыт с двух сторон полимерной ватой. Такой фильтр защищает ртуть от пыли и одновременно не позволяет проникать пару ртути из сосуда 5 в помещение.

Для приготовления адсорбента 20 г активированного угля пропитывают раствором, содержащим 5 г иода в 50 мл метанола, отфильтровывают и высушила воздухе.

Прежде чем проводить какие-либо отсчеты, барометр устанавливают строго вертикально по отвесу 7. Отклонение на 1° от вертикали вызывает погрешность в измерении давления ±0,1 мм при высоте столбика ртути h=760 торр.

Отсчет значения h, берут от нижней нулевой точки шкалы когда острие 8 касается поверхности ртути, до верхней линии 0-0 мениска ртути в трубке 3 (рис. 241,6). При оценке положения мениска он должен находиться на уровне глаз. Вследствие отражения делений шкалы, нанесенных на трубку, от поверхности ртути, положение верхней точки мениска трудно заметить. Поэтому отсчет для барометрических трубок с нанесенными на них делениями рекомендуют брать на фоне передвижном полости бумаги или стекла, имеющей одну половину черную -другую белую (см. рис. 81,е). Окулярную нить зрительной трубы для отметки 0-0 (на рис. не показана) устанавливают так, чтобы деления шкалы, если она нанесена на барометрическую трубку оказались сбоку, а не перед глазами.

Истинное расстояние h отвечающее температуре 1 между острием 8 и верхней точкой мениска 0-0 на шкале, отличается из-за термического расширения шкалы от произведенного отсчета ht и равно:

(Ю.2)

где отсчет по шкале при температуре t, — температура, при которой градуировалась шкала; а — коэффициент линейного расширения материала шкалы; значения а для стекла и латуни равны соответственно 1 • 10-5 и 2 • 10-5 на 1 °С.

После приведения значения ht, к истинному ht0 вносят еще и температурную поправку. Тогда

(10.3)

где beta — коэффициент объемного расширения ртути, равный 1,8168*10-4 на 1 °С в температурном интервале 0—100 oC.

Эта поправка приводит объем ртути, отвечающий температуре t, к объему, занимаемому ею при 0 °С. Поэтому ртутные манометры в процессе измерения давления должны быть защищены от изменения температуры вдоль барометрической трубки. Погрешность в оценке температуры на 1 °С будет соответствовать погрешности 0,12 мм при определении давления.

Если ртутный барометр содержит над ртутью остаточный воздух, то исключить его влияние на показания прибора можно только калибровкой такого барометра по образцовому прибору

Ртутный барометр U-образного типа с открытым концом (рис. 241,в) имеет около изгиба сужение 3 для того, чтобы резкие колебания давления не привели к выбросу ртути. Этот типы манометров широко применяют для измерения давлений от 5 до 300 торр. При измерениях трубку 4 соединяют с системой повышенного давления, а трубку 1, снабженную шкалой 2, оставляют открытой на атмосферу.

Тогда давление в системе, связной с манометром через трубку 4, будет равно алгебраической сумме показаний барометра, расположенного вблизи, и данного барометра.

В показания этих двух барометров вносят все поправки, рассмотренные выше при описании барометра. Наиболее серьезным источником погрешностей является капиллярное понижение мениска ртути. В табл. 35 приведены поправки на это явление, которые прибавляют к наблюдаемой высоте ртутного столба.

Данными табл. 35 можно пользоваться только при работе с совершенно сухой и чистой ртутью . Из табл. 35 видно, что применение для манометров трубок небольшого внутреннего диаметра приводит к неприемлемо высоким значениям капиллярного понижения мениска ртути, которое сильно зависит от высоты мениска 1. Поэтому применять для ртутных Урометров и манометров трубки с диаметром меньше 8 мм не Рекомендуют.

Если сечения левой и правой трубок барометра и манометра одинаковы и мениски ртути имеют одну и ту же высоту l, то никаких добавочных измерений проводить не нужно. Если же диаметры трубок разные и мениски ртути не одинаковы по высоте, то следует ввести поправку, представляющую собой разить поправок для верхнего и нижнего менисков.

Рис. 242. Наклонный барометр (а) и U-образный вакуумметр (б)

Перед началом измерений U-образным барометром проводят проверку нуля, соединив с атмосферой оба колена а в дифбарометре (рис. 241,г), соединив оба колена между собой при помощи крана 3 при закрытых кранах 1 и 2 По закону сообщающихся сосудов уровни в обоих коленах при этом устанавливаются на одной горизонтали. Перемещая шкалу 4 вверх или вниз, совмещают ноль шкалы с этой горизонталью.

Наклонный барометр с открытым концом 1 (рис. 242,а) обладает более высокой чувствительностью к изменениям давления по сравнению с U-образным вертикальным барометром. В наклонном колене 3 ртуть продвигается на большее расстояние 1 и измеряемое давление ее столба по шкале 2 равно

(10.4)

где α — угол наклона трубки к горизонтали.

Жидкостные вакуумметры — приборы для измерения небольших давлений газа в системе (вакуум от лат. vacuum — пустота). Вакуум считают низким, если давление соответствует 100 — Па Па (примерно, 1 — 100 торр), среднему вакууму отвечает давление от 100 до 0,1 Па, и высокому — от 0,1 до 10-6 Па.

Для измерения низкого вакуума в интервале 600 — 4*10-4 Па (5 — 300 торр) в лабораториях широко используют U-образный вакуумметр (рис. 242,6). Он является составной частью любой установки по вакуумной перегонке жидкостей (см. разл-8.4).

Высота вакуумметрической трубки 1 определяет значение измеряемого давления. Внутренний диаметр этой трубки равен 9-10 мм.

Критерием отсутствия воздуха в трубке 1 служит появления резкого звука, когда ртуть ударяется в запаянный конец трубки Если в трубке 1 виден хотя бы мельчайший пузырек воздуха вакуумметр нельзя использовать.

Другие части:

10.4. Измерение давления газа . Часть 1

10.4. Измерение давления газа . Часть 2

10.4. Измерение давления газа . Часть 3

К оглавлению

Теги

Давление вИзмерение давления газа Давление визмерения давления Манометры давления измеряется давление газаизмерить давление газаконтроля давления газадатчика давления котлаизмерять давление газа. Измерение давлениядля измерения давлениядля измерения давлениядля измерения давлениядля измерения давлениядля измерения дифференциальногодля измерения толькодля измерения давлениядля измерения давленияЕдиницы измерения давления Приборы дляКакими приборами измерить Прибор контролякакими приборами мы Приборы дляв приборе дляКакими приборами измерить Прибор контроля

барометрыртутидействиявысотариспринцип

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]