Оптические пирометры. Устройство. Принцип действия.

Одной из разновидностей пирометров – термометров, предназначенных для бесконтактных замеров температуры поверхности исследуемого тела без применения дополнительного оборудования, — является оптический пирометр (или пирометр визуальный с исчезающей нитью).

Инструменты этого класса измерительных приборов работают на визуальном сравнении интенсивности монохроматического излучения, которым обладает практически любой объект и интенсивности принятой за эталон пирометрической лампы накаливания. Оптические пирометры повсеместно используются для температурных замеров в видимой области спектра и находят свое применение:

  • в тяжелой и металлургической промышленности;
  • в диагностических службах электрооборудования и сервисных автомобильных центрах;
  • при транспортировке и хранении пищевых продуктов и медикаментов;
  • в научных и лабораторных исследованиях для практической термометрии;
  • в общестроительных и специализированных инженерных процессах.

Одно из основных достоинств использования оптических пирометров: отсутствие воздействия измеряющего инструмента на температурное поле предмета излучения, поскольку в ходе производимого диагностирования не предусмотрен их прямой контакт друг с другом.

Область применения

Достаточно широкое применение нашлось для пирометров на тех производствах, где установлено большое количество нагревательных приборов. В области строительства и теплоэнергетики они используются для расчета теплопотерь конструкций, в том числе пирометр помогает выявить повреждения теплоизоляции.

В промышленности подобные приборы дают возможность подвергать анализу температуру всевозможных процессов дистанционно. Это бывает необходимо, например, в машиностроении, металлургии и в прочих отраслях промышленности.

Так, электрики проверяют уровень нагрева мест соединения проводов, а автослесари проверяют нагрев деталей машины. Ученым пирометры приходят на помощь во время осуществления различных исследований или опытов: так они определяют верность показателей температуры веществ и тел.

В быту люди применяют подобные устройства для определения температуры тела, воды, еды и др.

Рейтинг лазерных бесконтактных пирометров 2022 г

Чтобы понять, какой пирометр лучше купить для дома, стоит ознакомиться с обзором популярных моделей. Самыми востребованными у покупателей являются бесконтактные приборы с лазерным прицелом.

ADA TemPro 700 A00224

Относительно недорогой прибор из профессиональной категории подходит для выявления утечек тепла в доме. Поставляется в прочном корпусе с длинной рукоятью, устойчив к температурным перепадам и отличается высокой достоверностью результатов. Оснащен лазерным прицелом, позволяющим снимать точечные показания.


Пирометр ADA TemPro 700 можно купить за 3500 рублей

Testo 830-T1

Прибор подходит для измерения низких и высоких температур, причем работает не только с твердыми объектами, но и с жидкостями. Благодаря встроенному лазеру может снимать показания как с обширных зон, так и с небольших участков. Способен проводить замеры в диапазоне от — 30 до + 400 °С.


Цена Testo 830-T1 начинается от 4000 рублей

Bosch PTD 1

Универсальный прибор определяет температуру воздуха и поверхности, а также уровень влажности в помещении. Применяется в технических целях, помогает выявить утечки тепла. Проводит замеры от — 20 до 200 °С по поверхности, а в качестве комнатного термометра отображает показания от — 10 до 40 °С.


Надежный Bosch PTD 1 стоит в среднем 8000 рублей

Стационарная модификация

Эти модели существенно отличаются компоновкой и представляют собой оптический модуль цилиндрической формы, внутри которого заключен измерительный датчик. Данный компонент соединен специальным прочным кабелем с электронным модулем управления, который оснащается монохромным жидкокристаллическим дисплеем и кнопочным меню управления.

Блок размещают в закрытом щитке, подключают питание и сигнальные линии. В дальнейшем величина выходного тока (или напряжения) передается по проводам на компьютер посредством специальных средств логики (контроллеров) и специализированного программного обеспечения. Такая схема удобнее, поскольку экран электронного модуля невелик. На нем трудно различить отображаемые показания.

Стационарные пирометры пригодны к применению в различных сферах промышленности. Они производятся с широким диапазоном измеряемых пределов. Благодаря такому качеству, прибор позволяет контролировать любой технологический процесс, связанный с температурой.

Топ-3 лучших пирометра с АлиЭкспресс

Дешевые, но функциональные пирометры можно приобрести в Интернете через АлиЭкспресс. Хотя надежность таких устройств считается более низкой, чем у приборов из фирменных магазинов, обычно они хорошо справляются с бытовыми задачами.

Habotest HT650A

Удобный домашний пирометр с круговым прицелом подходит для определения не только температуры, но и влажности. Максимальный порог для прибора составляет 380 °С, работает инфракрасное устройство по бесконтактному принципу.


Стоимость Habotest составляет от 1400 рублей на АлиЭкспресс

Norm 400/600

Инфракрасный прибор способен замерять температуру до 400 °С, подходит для любых целей — от медицинских до бытовых. Несмотря на невысокую стоимость, обладает малой погрешностью около 1,5%.


Стоимость пирометра Norm 400/600 — около 4000 рублей

DT-8809C

Среднебюджетный аппарат с АлиЭкспресс осуществляет измерения температуры у человека до 43 °С и у неодушевленных объектов — до 100 °С. Обладает высокой точностью, прост в использовании, замеры можно проводить с расстояния 5-10 см.


Купить DT-8809C можно от 4000 рублей

Что измеряют пирометром?

Предметом определения является среднее температурное значение для поверхностей предметов, тел в рамках пятен измерений. Они имеют эллипсовидную либо округлую форму. Чем больше длина пути от объекта измерения к пирометру, тем масштабнее размеры пятна. Устройство нацеливают на нужный предмет, материал при помощи встроенного в него лазерного указателя. Его направляют непосредственно в центр измеряемой окружности.

Современные пирометры дистанционно фиксируют температуру, допускают минимальные погрешности, а также имеют эргономичный дизайн и автономное питание. Таким оборудованием пользуются, когда необходимо:

  • проконтролировать температурный режим объектов в условиях высокого риска попадания под удар электрического тока;
  • иметь дело с поверхностью предметов, где могут наблюдаться резкие изменения температуры;
  • измерять силу нагрева объектов с неординарными температурными режимами (высокие уровни на одном и нормальные значения – на другом элементе).

Поскольку устройство имеет особый принцип работы, основанный на «считке» излучения тепловых волн инфракрасного диапазона, оно способно фиксировать температурные показатели объектов, которые находятся на расстоянии до 15 метров. Благодаря этому аппарат имеет такие плюсы, как:

  • безопасность;
  • удобство применения;
  • высокая точность фиксации показателей тел, предметов, конструкций, материалов.

Конструктивные особенности и основы использования

Ключевыми элементами любого бесконтактного термометра являются:

  • телескоп-преобразователь, в фокусной плоскости которого создается изображение обследуемого предмета; на этом же фокальном уровне находится ламповая нить из вольфрама. Две диафрагмы обеспечивают постоянство и предельность входных и выходных угловых показателей телескопической системы, а стеклянный красный световой фильтр монохроматизирует визуальный лучевой пучок, наблюдаемый оператором.
  • измерительное устройство: в стационарных инструментах общепромышленного назначения в этом качестве служит показывающий милливольтметр или миллиамперметр с проградуированной отсчетной шкалой. В образцовых пирометрических моделях повышенной точности измеряющим приспособлением выступает потенциометр, гарантирующий минимальную погрешность замеров.
  • источник питания (аккумуляторный элемент или батарейка).

Надёжность работы бесконтактных термометров оптического типа обуславливается стабильностью параметров эталонной лампы и точности показаний измеряющего устройства.

Накал нити зависит от силы протекающего по ней электротока, регулируемого реостатом. Наблюдатель через окуляр телескопа видит нить и совмещенное с ней изображение объекта излучения. Ток регулируется реостатом до тех пор, пока визуальная яркость эталонной нити не станет такой же, как яркость изображения тела: в этот момент нить, наложенная на изображение, исчезает.

Нижний предел измерений зависит от глаза человека и ограничен показателем яркости, слишком слабой для наблюдения, верхний является границей приемлемого для глаза значения яркости (примерно 1200-1300°С).

Как пользоваться?

Ручным устройством работать просто. Правила проведения замеров несложны и заключаются в следующем:

1. Необходимо включить пирометр;

2. С помощью лазерного указателя направить его на объект измерения;

3. Нажать кнопку активации (курок).

После совершения этих действий, на экране отобразится значение температуры. Важное условие для успешного и точного измерения – это соблюдение размеров пятна визирования на поверхности. Если не придерживаться рекомендации, то это привет к недопустимой погрешности.

Ввиду своих особенностей эксплуатации и установки, стационарные модели пирометров достаточно настроить один раз.

Какой пирометр лучше — лазерный или инфракрасный

Пирометры бывают оптическими и инфракрасными. Именно последние обычно и применяют в быту, они компактны, обладают хорошей точностью и выводят результаты на дисплей в цифровом виде.

Что касается лазерных устройств, то они являются разновидностью инфракрасных. Речь идет о приборах, оснащенных системой прицеливания. В применении они более удобны, чем приборы, у которых лазерного прицела не предусмотрено. Простейшие модели пирометров измеряют температуру «по области» и не сосредотачиваются на конкретной точке объекта. Приборы с лазером оценивают инфракрасное излучение на выбранном небольшом участке и поэтому демонстрируют повышенную точность.


Пирометры с лазерным прицелом объективно лучше, они гарантируют высокую точность замеров

Виды пирометров

Все пирометры можно разделить по следующим категориям или признакам: по принципу измерения, по температурному диапазону и по способу эксплуатации.

По принципу измерения пирометры бывают:

  • яркостные пирометры, позволяющие определять температуру объекта путем сравнения цвета с эталоном.
  • Радиационные пирометры, измеряющие температуру объекта посредством пересчета мощности теплового излучения.
  • Цветовые пирометры позволяют делать вывод о температуре объекта, основываясь на результатах сравнения его теплового излучения в различных спектрах.

По температурному диапазону:

  • Низкотемпературные. Пирометры этого типа способны определять отрицательные температуры, при этом диапазон положительных температур может быть достаточно большим.
  • Высокотемпературные. Пирометры работают в диапазоне высоких температур и не способны производить замеры объектов с отрицательной температурой.

По способу эксплуатации:

  • Переносные пирометры предназначены для эксплуатации в полевых условиях. Они имеют малый вес, дисплей отображения показателей, автономное питание. Предназначены для очень широкого круга задач по измерению температуры. Могут иметь внутреннюю память и подключаться к компьютеру для передачи данных.
  • Стационарные пирометры предназначены для выполнения чаше всего постоянного замера в конкретной точке. Обладают повышенной точностью и как правило не имеют своего дисплея, а передают данные на компьютер или пульт управления Способны работать при неблагоприятных условиях окружающей среды. Чаще всего применяются при необходимости замеров на промышленных предприятиях. Имеют большие размеры и вес.

Два основных метода пирометрии

Практическая пирометрия возникла на рубеже 19 и 20-го веков. Примерно тогда же и сформировались два основных метода пирометрии: радиационная (яркостная) пирометрия и цветовая пирометрия. Названия эти с течением времени менялись и корректировались, но суть методов осталась неизменной. Метод яркостной пирометрии (называемой также радиационной пирометрией, пирометрией по излучению) использует зависимость энергетической яркости излучения объекта в ограниченном диапазоне длин волн от его температуры. Другими словами, яркость излучения объекта зависит от его температуры. Следовательно, измерив яркость излучения объекта, мы можем измерить (с той или иной точностью) значение температуры объекта. Таким образом, ключевым элементом радиационного пирометра является приемник излучения, преобразующий приходящую на него энергию излучения в иную физическую величину, чаще всего в ток или в напряжение. Его дополняют оптическая система, собирающая в определенном телесном угле излучение от объекта, и электронная схема с системами питания и индикации, усиливающая, преобразовывающая и отображающая результат измерения. Метод цветовой оптической пирометрии первоначально основывался на зависимости спектрального распределения потока излучения нагретого объекта от температуры в диапазоне видимых длин волн. Другими словами, от температуры нагретого объекта зависел цвет его излучения. Объекты, нагретые до 700–800°С, светят темно-оранжевым светом, при 1000–1200°С цвет свечения становится ярко-оранжевым, постепенно переходя в желтый, при 2000°С цвет воспринимается нашим глазом как ярко-желтый, а после 2500°С свечение приближается к белому цвету. Долгое время основными элементами цветового сравнения были глаз оператора и нагретая нить накала (или спираль), расположенная в окуляре пирометра в поле зрения оператора. Нить в окуляре совмещалась с изображением измеряемого объекта. Регулируя проходящий через накальную нить электрический ток, оператор подбирал такое его значение, чтобы цвет нити совпадал с цветом измеряемого объекта. При определенном значении тока изображение нити «исчезало» на фоне нагретого объекта, что являлось критерием равенства температуры объекта и нагретой нити. Кстати, отсюда пошло и распространенное в литературе название подобных пирометров – пирометры с исчезающей нитью. В силу особенностей человеческого зрения описанный метод при опоре на восприятие цвета человеческим глазом имеет серьезные ограничения в точности и повторяемости результатов измерений. Поэтому с развитием компонентной базы весьма субъективные визуальные измерения были вытеснены измерениями с помощью нескольких приемников излучения, работающих в различных спектральных диапазонах. Таких приемников может быть и три, и семь, но на практике чаще всего ограничиваются двумя. Таким образом, в настоящее время этот метод основан на зависимости от температуры отношения энергетических яркостей объекта в двух различных областях спектра излучения. Соответственно, этот метод получил название метода пирометрии спектрального отношения. (Источник: ФОТОНИКА 4/2009)

Технические характеристики

Пирометр обладает рядом параметров, которые характеризуют его функциональность. Выбор желаемой модели аппарата осуществляется по их значениям. Обратимся к основным из них.

Оптическое разрешение

Так называют показатель отношения диаметра пятна инструмента к расстоянию до предмета. Эта функция зависит от угла объектива устройства: чем он больше, тем значительную площадь он сможет охватить. Важнейшим фактором точности измерения является наложение пятна исключительно на материал поверхности. Если площадь превышена, измеренное значение скорее всего будет неточным.

СПРАВКА. У каждой модели пирометра разное оптическое разрешение. Разница между ними внушительная, например, от 2:1 до 600:1. Последнее соотношение характерно для профессиональных устройств. Как правило, используются они в тяжелой промышленности. Оптимальным показателем для бытовых и полупрофессиональных пирометров считается 10:1.

Рабочий диапазон

Диапазон действия прибора зависит от пирометрического датчика и, зачастую, варьируется от -30 °С до 360 °С. Так, для бытового использования подойдут почти все виды пирометров, если учесть максимальную температуру теплоносителя в системе отопления до 110 °С.

Спектральный диапазон пирометра. Эффективная длина волны

На практике, большинство приемников излучения имеет существенно широкий диапазон волн и даже использование фильтров не достаточно ограничивает диапазон волн, чтобы можно было считать его строго монохроматическим. Однако кривая энергии в зависимости от длины волны очень крутая при короткой длине волны, и показания пирометров четко согласуются в значительном температурном диапазоне с расчетами Планка, соответствующими длине волны близкой к “отсечной” верхней длине волны системы приемник-фильтр. Понятие эффективной длины волны является весьма удобным для оценки скорости изменения энергии (и следовательно показаний пирометра) с изменением температуры, а также погрешности, возникающей от ошибки в определении коэффициента излучения поверхности. В МЭК 62942 дано следующее определение спектрального диапазона и эффективной длины волны пирометра: 4.1.1.9 Спектральный диапазон Спектральный диапазон приводится в мкм или нм. Спектральный диапазон определяется как нижний и верхний предел длины волны при достижении спектральной чувствительности 50 % от пика чувствительности. Может также приводится основная (эффективная) длина волны и полная ширина полосы пропускания, в которой чувствительность достигает 50 % от пика чувствительности (полная ширина на половине максимума (FWHM)). Общепринято для монохроматичеких пирометров приводить эффективную длину волны в спектральном диапазоне и полную ширину на половине максимума (FWHM), а для широкополосных пирометров приводить верхний и нижний предел. Приведем таблицу из МЭК 62942 (приложение 1), демонстрирующую изменение показаний пирометра, соответствующее изменению принимаемого излучения на 1 %, при опорной температуре пирометра 23 °С


Изменение в индицируемой температуре соответствующее изменению принятого пирометром потока излучения рассчитывалось как:


В следующей таблице приведена погрешность, обусловленная 10% изменением излучательной способности при 500°С.


Из приведенных данных следует, что всегда следует выбирать пирометр с самой короткой длиной волны, которая позволяет провести необходимые измерения самой низкой температуры в диапазоне измерения. Кроме сложности учета коэффициента излучения объекта, яростные пирометры имеют ряд иных существенных недостатков, их результаты зависят от: расстояния до измеряемого объекта, формы объекта, запыленности и загазованности промежуточной среды, наличия защитных стекол и непрозрачных объектов в поле зрения пирометра, боковых засветок при работе с крупноразмерными объектами, переотражений измеряемым объектом излучения сильно нагретых объектов, расположенных рядом. Как видите, факторов, мешающих получению радиационными пирометрами точных результатов, набирается с десяток. Именно поэтому пользователи все чаще и чаще задумываются об использовании пирометров спектрального отношения, более дорогих, чем радиационные, но свободных от многих вышеперечисленных недостатков.

Принцип действия

Работа приборов этого типа основана на возникновении инфракрасного излучения и определении показателя абсолютного значения излучаемой в инфракрасном спектре энергии длины волны.

Инструмент направляется на удалённый объект, расстояние до которого лимитируется только диаметром замеряемого пятна и составом («чистотой») окружающей объект воздушной среды. Измерение характеристик излучения объекта (его интенсивность и спектральный состав) пирометрическим прибором косвенным образом определяет и температуру его поверхности.

Принцип работы пирометра определяет основной функционал инструмента:

  • измерение температуры удалённых (недоступных или труднодоступных) объектов, а также температуры их движущихся элементов;
  • анализ температурного режима находящихся под напряжением объектов при невозможности контактных способов измерения;
  • экспресс-фиксация быстрых температурных изменений поверхности объектного тела;
  • исследование объектов, обладающих низкой теплоёмкостью или теплопроводностью.

Использование пирометра на промышленных объектах и в быту не представляет никаких сложностей: инструмент наводится на обследуемый объект, измерение и фиксация на дисплее температурных данных выполняется в считанные секунды при нажатии и удержании «курка».

Введение

Радиационные термометры (или пирометры) представляют собой неконтактные температурные датчики, действие которых основано на зависимости температуры от количества теплового электромагнитного излучения, полученного от объекта измерения. Это целая группа приборов, которая включает как приборы, измеряющие температуру точки на объекте, области на объекте, или позволяющие получить картину одномерного и даже двумерного распределение температуры на заданной площади измерения. Радиационные термометры очень широко используются в различных отраслях промышленности: металлургии, производстве стекла и керамики, полупроводников, пластика, бумаги и т.д. Радиационные термометры используются также в медицине, криминалистике, системах спасения людей и охраны. Главная трудность состоит в измерении температуры тела, излучательная способность которого неизвестна. Объект измерения чаще всего далек от абсолютно черного тела, это может быть окисленная поверхность, полупрозрачное стекло, зеркальная поверхность и т.д. Кроме того, возникают трудности учета излучения, испущенного близлежащей областью и излучения отраженного от соседних объектов. К сожалению, не существует ни одного метода оптической пирометрии, который мог бы охватить весь набор встречающихся ситуаций. Однако разработаны различные подходы, каждый из которых способен преодолеть одну или две вышеупомянутые трудности. Приборы этого типа имеют множество наименований: оптические пирометры, радиационные пирометры, пирометры полного излучения, автоматические инфракрасные термометры, термометры непрерывного излучения, линейные сканеры, тепловизионные радиометры, поверхностные пирометры, пирометры отношения, двухцветовые пирометры и т.п. Эти наименования больше связаны с назначением приборов. Общий термин, который применим к данному классу приборов и имеет техническое функциональное значение – радиационные термометры. В последнее время возрос интерес к формированию международной универсальной терминологии в неконтактной термометрии и разработке номенклатуры международных требований к характеристикам радиационных термометров. Так, в 2006-2007 разрабатывался новый стандарт МЭК “Технические требования к радиационным термометрам”. (IEC TS 62492 Radiation thermometers — Part 1: Specifications for Radiation Thermometers). Новый стандарт введен в обращение в марте 2008 г. Об участии российских специалистов в разработке стандартов МЭК cм. раздел РГЭ. Подробный анализ терминологии в области пирометрии и тенденций в развитии терминов дается в опубликованной на сайте статье директора ООО «ТЕХНО-АС» С.С. Сергеева «Тенденции изменения терминологии в пирометрии». Приглашаем обсудить базовые термины в разделе форума «Термины и определения в области термометрии». Радиационные термометры представляют собой развивающиеся приборы, множество докладов на международных конференциях и множество публикаций в журналах посвящено совершенствованию неконтактных методов измерения температуры и повышению их точности. Надеемся, что на нашем сайте Вы сможете прочитать статьи о новинках в этой области в разделах «публикации» , «производители неконтактных датчиков температуры», «каталог приборов».

Какие бывают дополнительные функции?

В зависимости от сферы применения пирометра, определяют целесообразность покупки: простую модель или с набором дополнительных свойств. В любом случае стоит о них упомянуть:

  • Подсветка дисплея (Bosch PTD 1 0603683020, ADA TemPro 1600 А00128). Этой функцией обладают практически все приборы и это обоснованно. Даже во время работы при плохой видимости данные хорошо различимы.
  • Встроенная память (ADA TemPro 1600 А00128). В зависимости от модели техники можно сохранять до 10 измерений. Это очень удобно, потому что информацию не нужно записывать в блокнот.
  • Подключение к компьютеру через USB-порт. Показания можно сохранить в компьютере, чтобы потом использовать в анализе работы или составлении отчета.
  • Определение максимального/минимального значения, вычисление разницы между показаниями, усредненной температуры (ADA TemPro 1600 А00128). Эти функции пригодятся, если планируется производить сложную диагностику работы механизма.
  • Удержание полученного показания на экране (Testo 830-T3). Работать с таким прибором удобно, потому что после того, как сделан замер, показания не исчезнут, а будут видны, пока человек не активирует другую программу.

Эти параметры нужно учитывать при выборе, потому что с ними даже очень сложные замеры Вы выполните просто, быстро и с удовольствием. Подробная информация о характеристиках и возможностях прибора указана в инструкции к товару, поэтому перед покупкой обязательно ознакомьтесь с ней. Зная все самые важные особенности разных моделей техники, Вам легко будет остановиться на самой подходящей.

Не сомневайтесь в том, что использование инструмента на практике не составит труда, и представьте, каких затрат можно избежать, имея такого помощника. С пирометром удастся своевременно обнаружить «слабое» место в двигателе автомобиля, в домашней котельной или на кровле. Таким образом, не потребуется покупать новый «движок» (достаточно дорогостоящий), котел не выйдет из строя, потому что вовремя будет поменян шланг, обои на стене комнаты не нужно будет переклеивать из-за влажности. Знакома хотя бы одна из этих причин? Тогда не медлите с оформлением заказа через интернет-магазин «»! После завершения процедуры оплаты покупка будет доставлена в кратчайшие сроки и Вы сразу же сможете приступить к запланированной диагностике температуры.

Излучательная способность (коэффициент излучения)

Коэффициент излучения (называемый иногда «степень черноты») характеризует способность поверхности тела излучать инфракрасную энергию. Этот коэффициент определяется как отношение энергии, излучаемой конкретной поверхностью при определенной температуре к энергии излучения абсолютно черного тела при той же температуре. (см. также раздел СЛОВАРЬ ТЕРМИНОВ). Он может принимать значения от очень малых, ниже 0,1 до близких к 1. ИК термометры, как правило, дают возможность устанавливать для каждого объекта свой коэффициент излучения. Неправильный выбор коэффициента излучения – основной источник погрешности для всех пирометрических методов измерения температуры. Как выбрать степень черноты? Существуют справочные таблицы, показывающие степень черноты для различных материалов и различной обработки поверхности. Таблицы для некоторых распространенных материалов приведены в разделе сайта «Справочник». Необходимо отметить, что на коэффициент излучения сильно влияет окисленность поверхности металлов. Так, если для стали окисленной коэффициент составляет примерно 0,85, то для полированной стали он снижается до 0,075. Можно также использовать экспериментальные методики. Наиболее распространены в методиках поверки пирометров и тепловизионных термометров следующие методы определения коэффициента излучения. 1. Определите действительную температуру объекта с помощью контактного датчика — термопары, термометра сопротивления и т.д. Затем измерьте температуру с помощью пирометра и подберите такую степень черноты, чтобы показания пирометра совпали с показаниями контактного датчика. 2. При сравнительно низких температурах объекта (до 250°С) можно наклеить на участок поверхности объекта ленту черного цвета (например, электроизоляционную). Затем измерьте температуру ленты с помощью пирометра при установленной степени черноты 0,95. После этого измерьте с помощью пирометра незакрытую лентой часть объекта и подберите такую степень черноты, чтобы показания пирометра совпали с результатом измерения ленты. 3. Если часть объекта может быть окрашена, окрасьте ее матовой черной краской, которая имеет степень черноты около 0,98. Затем измерьте температуру окрашенного участка с помощью пирометра при установленной степени черноты 0,98. После этого измерьте с помощью пирометра неокрашенную часть объекта и подберите такую степень черноты, чтобы показания пирометра совпали с результатом измерения на окрашенном участке. (источник: методика поверки ИК-пирометров «Термоскоп-100» ООО «Инфратест»). . Следует отметить, что коэффициент излучения зависит от длины волны. Он тем выше, чем короче длина волны. Кроме того, ошибка, вызванная неточным определением коэффициента излучения, будет пропорциональна эффективной длине волны. В случаях, когда, например, надо измерять температуру поверхности частично окисленного металла преимущество коротковолновых пирометров очевидно, т.к. окисленный слой будет иметь высокую и стабильную излучательную способность скорее при короткой длине волны, чем при длинной. Кроме того, коротковолновые яркостные пирометры обычно менее подвержены влиянию атмосферного поглощения, чем пирометры широкого спектра. Если поглощение вызвано частицами или каплями на пути визирования, уменьшенное значение погрешности при коротких волнах будет иметь меньшую относительную зависимость измерений температуры от энергии. Поэтому там, где требуется высокая точность измерения температуры поверхности рекомендуется использовать коротковолновый яркостный пирометр. Название “коротковолновый” – относительное, например при Т=1000°С 1мкм – короткая длина волны; в то время как при Т=10°С 10 мкм также считается короткой длиной. За критерий эффективной длины волны для отнесения пирометра к достаточно “коротковолновому” принимается максимальная длина волны, которая должна быть настолько короткой, чтобы обеспечить достаточную энергию для получения необходимого отношения сигнал-шум от детектора при минимальной измеряемой температуре. При выполнении теоретического анализа эффективной длины волны обычно исходят из предположения, что пирометры используют узкий диапазон волн и поэтому изменение показаний в зависимости от изменения температуры может быть определено по закону Планка. где I(ν)dν — мощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν до ν + dν. это выражение эквивалентно следующему: где u(l)dl — мощность излучения на единицу площади излучающей поверхности в диапазоне длин волн от l до l + d l

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]