Использование алюминия: сферы применения чистого металла и его сплавов

Алюминий, как наиболее легкий и пластичный металл, обладает широкой сферой использования. Он отличается устойчивостью к коррозии, имеет высокую электропроводность, а также легко переносит резкие температурные колебания. Еще одной особенностью является при контакте с воздухом появление на его поверхности особой пленки, которая защищает металл.

Все эти, а также другие особенности послужили его активному использованию. Итак, давайте узнаем подробнее, каковы области применения алюминия.

Потребление в промышленности и жизни

На рисунке ниже показаны восемь секторов промышленности и строительства, в которых применение алюминия происходит особенно активно. Процентные доли по различным секторам промышленности в общем потреблении представлены по статистическим данным Международного Института алюминия за 2007 год. С тех пор, думается, картина в целом не изменилась, и эти данные вполне актуальны.


Применение алюминия в готовой промышленной продукции [1]

Основными отраслями промышленности, которые активно применяют алюминий, являются:

  • Строительство
  • Упаковывание продукции
  • Электрическая промышленность
  • Транспортное машиностроение
  • Производство машин и оборудования
  • Производство товаров для повседневной жизни
  • Порошковая металлургия
  • Раскисление стали в черной металлургии

Как используют основные свойства алюминия в строительстве

Строительство – одна из основных отраслей-потребителей алюминия. 25 % всего вырабатываемого металла используется именно в ней. Современный облик мегаполисов был бы невозможен без использования алюминия. Он дает возможность создавать функциональные и красивые здания, стремящиеся ввысь. Небоскребы офисных центров имеют фасады из стекла, закрепленные на прочных, легких рамах из алюминия.

Современные торговые, развлекательные и выставочные центры в основе своей имеют каркас из алюминия. Конструкции из данного металла используются для возведения бассейнов, стадионов и других спортивных строений. Алюминий – один из самых востребованных у архитекторов, строителей, дизайнеров металлов. Почему? Давайте разберемся.

Алюминий – прочный и легкий металл, не поддающийся коррозии, имеющий долгий срок службы и совершенно нетоксичный. Он легко поддается обработке, сварке, паянию, его просто сверлить, распиливать, связывать и соединять шурупами. Этот металл способен принять любую форму посредством экструзии. Алюминий поможет воплотить самый смелый замысел архитектора. Из него изготавливаются конструкции, которые невозможно сделать из иных материалов: пластика, дерева или стали.

Строительство

Алюминиевые окна и фасады

Основными алюминиевыми сплавами, которые находят применение в строительной промышленности, являются сплавы 6063 и 6060, а также сплав 6082 (в Европе) и сплав 6061 (в Северной Америке). Они обладают довольно высокой прочностью (6082 и 6061 – до 400 МПа) и хорошей коррозионной стойкостью.

Оконные алюминиевые профили с терморазвязкой (сплавы 6060/6063)

Важнейшие конструкционные характеристики алюминия, которые определяют применение алюминия как материала для оконных и дверных рам:

  • прочность для обеспечения жесткости и безопасности;
  • способность принимать сложные формы (обеспечивается экструзией);
  • привлекательный внешний вид;
  • коррозионная стойкость;
  • минимальная потребность в техническом обслуживании.

Навесной фасад с алюминиевым каркасом (сплавы 6060/6063)


Стоечно-ригельный фасад

Алюминиевая кровля и алюминиевая облицовка зданий

Декоративные и защитные профилированные облицовочные материалы часто изготавливают из катаных алюминиевых листов. Различные виды декоративных и защитных покрытий делают их идеальными материалами для применение в качестве кровельного материала.

Применение для кровли и облицовки зданий обеспечивают следующие свойства алюминия:

  • низкая масса, благодаря низкой плотности;
  • стойкость к воде;
  • коррозионная стойкость;
  • декоративный вид.

Алюминиевая кровля

Соединения металла

Сплавы получается в результате искусственного добавления к алюминию других металлов с целью получения необходимых свойств. И на сегодняшний момент существует нескончаемое количество составов таких сплавов, имеющих самое широкое применение.

  • Наиболее известной сферой их применения является авиастроение. Для производства самолетов используются сплавы, состоящие из алюминия, цинка и магния, что в результате позволяет получить сверхпрочный и надежный материал.
  • Также нередко используются сплавы алюминия с железом, титаном, никелем.

Если вы захотите самостоятельно изготовить что-либо из алюминия, то следующее видео расскажет вам о его расплавке в домашних условиях:

Источник

Транспорт

Алюминий в легковых автомобилях

Средняя масса алюминия в легковых автомобилях в Европе в 2006 составляла около 118 кг и продолжала увеличиваться. Его доля в различных компонентах и деталях автомобилей составляет (в килограммах на один автомобиль):

  • блоки цилиндров двигателей: 40,3
  • трансмиссия: 16,3
  • шасси, подвеска и управление: 12,5
  • колеса: 17,7
  • теплообменник: 12,3
  • тормоза: 3,7
  • кузов: 6,8
  • тепловые экраны: 1,4
  • бамперы: 2,8
  • другие компоненты: 3,9.

Алюминиевый блок цилиндров автомобиля

Алюминиевый автомобильный колесный диск

Применение алюминия для изготовления автомобильных деталей обусловлено следующими его свойствами:

  • низкая плотность;
  • прочность;
  • жесткость;
  • вязкость;
  • стоимость;
  • коррозионная стойкость.


Алюминиевая рама автомобиля

Алюминиевые сплавы для грузовых автомобилей

Алюминиевые сплавы для автомобильных цистерн [5]


Производство алюминиевых автомобильных цистерн [5]


Алюминиевые сплавы для кузовов самосвалов [5]


Производство алюминиевых кузовов самосвалов [5]


Алюминиевые сплавы для автомобильных фургонов [5]


Алюминиевые сплавы для шасси грузовых автомобилей [5]

Алюминий в вагоностроении

Конструкция высокоскоростного поезда Intercity Express из прессованных алюминиевых профилей – Германия, 1992


Алюминиевый вагон городского рельсового транспорта [7]


Грузовой алюминиевый вагон для перевозки угля [7]

Алюминий в судостроении


Алюминевый патрульный катер


Круизный лайнер с алюминиевой надстройкой [5]


Алюминиевая яхта-катамаран [5]

Алюминиевые сплавы для самолетов

Первый самолет братьев Райт в 1903 году был в основном деревянным с алюминиевым двигателем.

Среди алюминиевых сплавов, которые применяют в самолетостроении доминируют высокопрочные деформируемые сплавы, такие как, сплав 2024 (содержащий медь и магний) и сплав 7075 (содержащий магний, цинк и немного меди). Большинство алюминиевых сплавов, которые применяются в самолетостроении, являются несвариваемыми и их соединяют в основном заклепками.

На рисунках ниже показано применение сплавов серии 2ххх для изготовления фюзеляжа самолета и сплавов серии 7ххх – для крыльев.

(a)

(б)

Применение алюминиевых сплавов в самолетостроении: а – сплавы серии 7ххх для фюзеляжа и б – сплавы серии 2ххх для крыльев [2].


Аэробус А380

Основные требования к алюминиевым сплавам в аэрокосмической промышленности:

  • низкая плотность;
  • высокая прочность;
  • точность механической обработки;
  • коррозионная стойкость;
  • стоимость.

Получение алюминия.

Документально зафиксированное открытие алюминия произошло в 1825. Впервые этот металл получил датский физик Ганс Христиан Эрстед, когда выделил его при действии амальгамы калия на безводный хлорид алюминия (полученный при пропускании хлора через раскаленную смесь оксида алюминия с углем). Отогнав ртуть, Эрстед получил алюминий, правда, загрязненный примесями. В 1827 немецкий химик Фридрих Вёлер получил алюминий в виде порошка восстановлением гексафторалюмината калием:

Na3AlF6 + 3K ® Al + 3NaF + 3KF. Позднее ему удалось получить алюминий в виде блестящих металлических шариков. В 1854 французский химик Анри Этьен Сент-Клер Девилль разработал первый промышленный способ получения алюминия – восстановлением расплава тетрахлоралюминиата натрием: NaAlCl4 + 3Na ® Al + 4NaCl. Тем не менее, алюминий продолжал оставаться чрезвычайно редким и дорогим металлом; он стоил ненамного дешевле золота и в 1500 раз дороже железа (сейчас – только втрое). Из золота, алюминия и драгоценных камней была сделана в 1850-х погремушка для сына французского императора Наполеона III. Когда в 1855 на Всемирной выставке в Париже был выставлен большой слиток алюминия, полученный новым способом, на него смотрели, как на драгоценность. Из драгоценного алюминия сделали верхнюю часть (в виде пирамидки) памятника Вашингтону в столице США. В то время алюминий был ненамного дешевле серебра: в США, например, в 1856 он продавался по цене 12 долл. за фунт (454 г), а серебро – по 15 долл. В изданном в 1890 1-м томе знаменитого Энциклопедического словаря Брокгауза и Ефрона говорилось, что «алюминий до сих пор служит преимущественно для выделки… предметов роскоши». К тому времени во всем мире ежегодно добывалось всего 2,5 т. металла. Лишь к концу 19 в., когда был разработан электролитический способ получения алюминия, его ежегодное производство начало исчисляться тысячами тонн, а в 20 в. – млн. тонн. Это сделало алюминий из полудрагоценного широко доступным металлом.

Современный способ получения алюминия был открыт в 1886 молодым американским исследователем Чарлзом Мартином Холлом. Химией он увлекся еще в детстве. Найдя старый учебник химии своего отца, он начал усердно штудировать его, а также ставить опыты, однажды даже получил нагоняй от матери за порчу обеденной скатерти. А спустя 10 лет он сделал выдающееся открытие, прославившее его на весь мир.

Став в 16 лет студентом, Холл услышал от своего преподавателя, Ф.Ф.Джуэтта, что если кому-нибудь удастся разработать дешевый способ получения алюминия, то этот человек не только окажет огромную услугу человечеству, но и заработает огромное состояние. Джуэтт знал, что говорил: ранее он стажировался в Германии, работал у Вёлера, обсуждал с ним проблемы получения алюминия. С собой в Америку Джуэтт привез и образец редкого металла, который показал ученикам. Неожиданно Холл заявил во всеуслышание: «Я получу этот металл!»

Шесть лет продолжалась упорная работа. Холл пытался получать алюминий разными методами, но безуспешно. Наконец, он попробовал извлечь этот металл электролизом. В то время электростанций не было, ток приходилось получать с помощью больших самодельных батарей из угля, цинка, азотной и серной кислот. Холл работал в сарае, где устроил маленькую лабораторию. Ему помогала сестра Джулия, которая очень интересовалась опытами брата. Она сохранила все его письма и рабочие журналы, которые позволяют буквально по дням проследить историю открытия. Вот выдержка из ее воспоминаний:

«Чарлз всегда был в хорошем настроении, и даже в самые плохие дни был способен посмеяться над судьбой незадачливых изобретателей. В часы неудач он находил утешение за нашим стареньким пианино. В своей домашней лаборатории он работал по-многу часов без перерыва; а когда он мог ненадолго оставить установку, то мчался через весь наш длинный дом, чтобы немного поиграть… Я знала, что, играя с таким обаянием и чувством, он постоянно думает о своей работе. И музыка ему в этом помогала.»

Самым трудным было подобрать электролит и защитить алюминий от окисления. Через шесть месяцев изнурительного труда в тигле, наконец, появилось несколько маленьких серебристых шариков. Холл немедленно побежал к своему бывшему преподавателю, чтобы рассказать об успехе. «Профессор, я получил его!», – воскликнул он, протягивая руку: на ладони лежал десяток маленьких алюминиевых шариков. Это произошло 23 февраля 1886. А спустя ровно два месяца, 23 апреля того же года, француз Поль Эру взял патент на аналогичное изобретение, которое он сделал независимо и почти одновременно (поразительны и два других совпадения: и Холл, и Эру родились в 1863 и умерли в 1914).

Сейчас первые шарики алюминия, полученные Холлом, хранятся в Американской Алюминиевой компании в Питтсбурге как национальная реликвия, а в его колледже стоит памятник Холлу, отлитый из алюминия. Впоследствии Джуэтт писал: «Моим самым важным открытием было открытие человека. Это был Чарлз М.Холл, который в возрасте 21 года открыл способ восстановления алюминия из руды, и таким образом сделал алюминий тем замечательным металлом, которым теперь широко пользуются во всем мире». Пророчество Джуэтта сбылось: Холл получил широкое признание, стал почетным членом многих научных обществ. Но личная жизнь ему не удалась: невеста не хотела смириться с тем, что ее жених все время проводит в лаборатории, и расторгла помолвку. Холл нашел утешение в родном колледже, где он проработал до конца жизни. Как писал брат Чарлза, «колледж был для него и женой, и детьми, и всем остальным – всю его жизнь». Колледжу Холл завещал и б?льшую часть своего наследства – 5 млн. долл. Умер Холл от лейкемии в возрасте 51 года.

Метод Холла позволил получать с помощью электричества сравнительно недорогой алюминий в больших масштабах. Если с 1855 до 1890 было получено лишь 200 тонн алюминия, то за следующее десятилетие по методу Холла во всем мире получили уже 28 000 т этого металла! К 1930 мировое ежегодное производство алюминия достигло 300 тыс. тонн. Сейчас же ежегодно получают более 15 млн. т. алюминия. В специальных ваннах при температуре 960–970° С подвергают электролизу раствор глинозема (технический Al2O3) в расплавленном криолите Na3AlF6, который частично добывают в виде минерала, а частично специально синтезируют. Жидкий алюминий накапливается на дне ванны (катод), кислород выделяется на угольных анодах, которые постепенно обгорают. При низком напряжении (около 4,5 В) электролизеры потребляют огромные токи – до 250 000 А! За сутки один электролизер дает около тонны алюминия. Производство требует больших затрат электроэнергии: на получение 1 тонны металла затрачивается 15000 киловатт-часов электроэнергии. Такое количество электричества потребляет большой 150-квартирный дом в течение целого месяца. Производство алюминия экологически опасно, так как атмосферный воздух загрязняется летучими соединениями фтора.

Космическая техника

Первым, кто понял огромный потенциал алюминия для космоса, был великий писатель-писатель Жюль Верн. В своем романе «Путешествие на Луну» от еще в 1865 году детально описал ракету из алюминия.

Алюминиевые сплавы для космических аппаратов

Корпус первого советского спутника, который был запущен в октябре 1957 года, был изготовлен из алюминиево-магниевого сплава АМг6 с содержанием магния 6 %. Алюминиево-магниевые сплавы остаются основным материалом для изготовления корпусов ракет. Во внутренних отсеках ракет применяются и дюралевые алюминиевые сплавы.


Первый искусственный космический объект – советский Спутник 1

В последние десятилетия 20-го века в космических аппаратах стали применяться алюминиево-литиевые сплавы. Плотность лития составляет всего 0,533 г/см3 – он легче воды. Добавки лития в алюминий в количестве до 2,5 % снижают плотность алюминиевого сплава , а также повышают его модуль упругости. Так, сплав 8090 имеет плотность на 10 % ниже, а модуль упругости на 11 % выше, чем у популярных в самолетостроении сплавов 2024 и 2014. На рисунке ниже показано колесо марсохода Curiosity из алюминиевого сплава 7075.

Колесо марсохода Curiosity из алюминиевого сплава 7075-Т7351

Алюминий применяется также в качестве связующего материала в бороалюминиевых композитах, которые в настоящее время также применяются в космической технике.

Бороалюминиевый композит (40 % волокон бора)

Порошковый алюминий – компонент ракетного топлива

Высокая химическая активность алюминия дает возможность применять его в составе ракетного топлива для твердотопливных ускорителей в разрабатываемой NASA системе космических запусков (SLS).

В ракетных ускорителях алюминиевый порошок и перхлорат аммиака соединяются вместе с помощью специального связующего вещества. Эта смесь, похожая на материал стирательной резинки, помещается затем в стальной корпус [3].

Когда эта смесь загорается, кислород из перхлората аммиака соединяется с алюминием с образованием оксида алюминия, хлорида алюминия, водяного пара и газообразного азота, а также с выделением огромного количества энергии.

Алюминий входит в состав твердого топлива для ракетных ускорителей NASA [3]

Как применяют основные свойства алюминия

Алюминий в чистом виде имеет слабые механические свойства. Именно поэтому наиболее часто применяют его сплавы.

Таких сплавов достаточно много, вот основные из них:

  • алюминий с марганцем;
  • дюралюминий;
  • алюминий с магнием;
  • алюминий с медью;
  • авиаль;
  • силумины.

В основе этих сплавов лежит алюминий, отличаются они исключительно добавками. Последние же делают материал прочным, легким в обработке, более стойким к износу, коррозии.

Есть несколько основных областей применения алюминия (чистого или в виде сплава). Из металла изготавливают:

  • фольгу и проволоку для бытового использования;
  • посуду;
  • морские и речные суда;
  • самолеты;
  • реакторы;
  • космические аппараты;
  • архитектурные и строительные элементы и конструкции.

Алюминий является одним из самых важных металлов наравне с железом и его сплавами. Эти два элемента таблицы Менделеева наиболее широко применяются человеком в своей деятельности.

Упаковка продуктов

Катаный алюминий – ленты и фольга – применяют в упаковке сыпучих и жидких продуктов. Алюминиевая упаковка сопровождает нас повсюду в нашей жизни – это, например, алюминиевые банки и бутылки, фольга в упаковке продуктов и лекарств. Алюминий обладает низкой плотностью, совместимостью с продуктами и напитками и привлекательным внешним видом. Это делает его идеальным материалом для различных видов упаковки: жестких (банки) и мягких (фольга).

Алюминиевые банки для упаковки пищевых продуктов [6]

Алюминиевые банки

Из алюминия изготавливают 75 % банок для напитков и 15 % емкостей для аэрозолей. Алюминиевые банки обеспечивают значительное снижение веса упаковки по сравнению с аналогичными стальными банками.

Корпус банки изготавливают из сплава серии 3000 (алюминиево-марганцевые сплавы), который после глубокой высадки раскатывают до толщины стенки 0,27 мм.

Крышка банки составляет 25 % ее веса. Ее изготавливают из более прочного алюминиево-магниевого сплава. Встроенный в банку рычаг-“открывашка”, который крепится к банке на интегральной заклепке, состоит из другого алюминиево-магниевого сплава. Эту заклепку накатывают из тела крышки при ее изготовлении.


Алюминиевая банка для упаковки пива и прохладительных напитков

Требования к алюминиевым сплавам для упаковочного сектора промышленности:

  • низкая плотность;
  • прочность;
  • хорошая формуемость;
  • совместимость с продуктами и напитками;
  • декоративность (способность к нанесению рисунков и надписей);
  • стоимость.

Упаковочная фольга

Алюминиевую фольгу обычно изготавливают из марок технического алюминия серии 1000. Свойства алюминия, которые обеспечивают возможность его применения в качестве материала для изготовления фольги, следующие:

  • прочность и непроницаемость для жидкостей и газов при малой толщине;
  • низкая плотность;
  • термическая проводимость;
  • теплостойкость;
  • стойкость к проникновению газов и жидкостей;
  • совместимость с продуктами и напитками;
  • эстетический и декоративный потенциал.

Алюминиевая упаковочная фольга

Основные физические свойства алюминия

Основные характеристики алюминия – высокая электро- и теплопроводность, пластичность, устойчивость к холоду и коррозии. Его можно обрабатывать посредством прокатки, ковки, штамповки, волочения. Алюминий прекрасно поддается сварке.

Примеси, присутствующие в металле в различных количествах, значительно ухудшают механические, технологические и физико-химические свойства чистого алюминия. Основными из них являются титан, кремний, железо, медь и цинк.

По степени очистки алюминий разделяют на технический металл и высокой чистоты. На практике различия данных типов – в стойкости к коррозии в различной среде. Стоимость напрямую зависит от чистоты алюминия. Технический металл подходит для производства проката, различных сплавов, кабельно-проводниковых изделий. Чистый используют для специальных целей.

Алюминий обладает высокой электропроводностью, уступая только золоту, серебру, меди. Однако сочетание данного показателя с малой плотностью позволяет использовать его при производстве кабельно-проводниковых изделий наравне с медью. Электропроводность металла может увеличиваться при длительном отжиге или ухудшаться при нагартовке.

Увеличивая чистоту алюминия, производители повышают его теплопроводность. Снизить данное свойство способны примеси меди, марганца и магния. Более высокую теплопроводность имеют исключительно медь и серебро. Именно благодаря данному свойству данный металл используют для производства радиаторов охлаждения и теплообменников.

Удельная теплоемкость алюминия, как и температура его плавления, достаточно высока. Данные показатели значительно превышают аналогичные значения большей части металлов. С повышением чистоты металла увеличивается и его способность отражать от поверхности световые лучи. Алюминий хорошо поддается полировке и прекрасно анодируется.

Металл близок по свойствам к кислороду, его поверхность на воздухе быстро затягивается пленкой из оксида алюминия – тонкой и прочной. Обладая антикоррозионными свойствами, она защищает металл от образования ржавчины и предупреждает дальнейшее окисление. Алюминий не взаимодействует с азотной кислотой (концентрированной и разбавленной) и органическими кислотами, он стоек к воздействию пресной, соленой воды.

Эти особенности алюминия придают ему устойчивость к коррозии, что и используется людьми. Именно поэтому его особенно широко применяют в строительстве. Интерес к нему увеличивается еще и по причине его легкости в сочетании с прочностью и мягкостью. Такие характеристики есть далеко не у всякого вещества.

Помимо вышеуказанных, алюминий имеет еще несколько интересных физических свойств:

  • Ковкость и пластичность – алюминий стал материалом изготовления прочной и легкой тонкой фольги, а также проволоки.
  • Плавление происходит при температуре +660 °С.
  • Температура кипения +2 450 °С.
  • Плотность – 2,7 г/см³.
  • Наличие объемной гранецентрированной металлической кристаллической решетки.
  • Тип связи – металлический.

Провода и кабели

Высокая электрическая проводимость марок алюминия серии 1000, а также алюминиевых сплавов серии 8000, делает их весьма подходящими для изготовления электрических проводников. Алюминиевые проводники применяют в следующих случаях:

  • распределительные электрические подстанции;
  • силовые системы высотных зданий;
  • высоковольтные линии электропередач;
  • большинство подземных линий электропередач;
  • силовые кабели для промышленного применения.

Большая часть алюминия в электротехнической промышленности применяется в виде кабелей (8 из 13 %). Однако его применяют также и в виде электрических шин для оборудования с большой силой тока, а также для питания электричеством больших зданий. Кроме того, кабели для промышленных, торговых и жилых зданий могут содержать много изолированных проводников, которые помещают в общий защитный алюминиевый рукав.

Требования к алюминию, который применяется для электротехнических приложений:

  • приемлемая стоимость;
  • достаточно высокая электрическая проводимость;
  • коррозионная стойкость;
  • прочность.

Как был открыт алюминий и каковы его основные свойства

Алюминий представляет собой парамагнитный металл, достаточно легкий, имеющий серебристый цвет. Он хорошо поддается механической обработке и литью, просто формуется. В земной коре этот элемент третий по распространенности, впереди только кислород и кремний. Наши недра содержат целых 8 % данного металла, что значительно больше золота, количество которого составляет не более пяти миллионных долей процента.

Алюминий активно используется в большинстве сфер производства. Его сплавы применяются для изготовления бытовой техники, транспорта, в машиностроении и электротехнике. Капитальное строительство также не может обойтись без него.

VT-metall предлагает услуги:

Он чрезвычайно распространен в земной коре, являясь первым из металлов и третьим химическим элементом (первое место у кислорода, второе – у кремния). Доля алюминия в наших недрах – 8,8 %. Металл является частью большого количества горных пород и минералов, основной из которых – алюмосиликат.

В виде соединений алюминий находится в базальтах, полевых шпатах, гранитах, глине и пр. Однако в основном его получают из бокситов, которые достаточно редко встречаются в виде месторождений. В России такие залежи есть только на Урале и в Сибири. В промышленных масштабах алюминий можно также добывать из нефелинов и алунитов.

Рекомендуем статьи по металлообработке

  • Марки сталей: классификация и расшифровка
  • Марки алюминия и области их применения
  • Дефекты металлический изделий: причины и методика поиска

Ткани животных и растений содержат алюминий в виде микроэлемента. Некоторые организмы, например, моллюски и плауны, являются его концентраторами, накапливая в своих органах.

Человечеству с давних времен знакомо соединение алюминия под названием алюмокалиевые квасцы. Применялось оно в процессе выделки кожи, в качестве средства, которое, набухая, связывает различные компоненты смеси. Во второй половине XVIII в. ученые открыли оксид алюминия. А вот вещество в чистом виде получили значительно позже.

Впервые это удалось Ч. К. Эрстеду, который выделил алюминий из хлорида. Проводя опыт, он обрабатывал соли калия амальгамой, в результате чего выделился порошок серого цвета, признанный всеми чистым алюминием.

В дальнейшем, исследуя металл, ученые определили его химические свойства, проявляющиеся в высокой способности к восстановлению и активности. Именно поэтому с алюминием долгое время не работали.

Но уже в 1854 г. французский ученый Девиль, применив электролиз расплава, сумел получить металл в слитках. Данный метод используется и сейчас. В промышленных масштабах алюминий стали производить в начале XX в., когда предприятия смогли получить доступ к большому количеству электроэнергии.

Сегодня алюминий является одним из самых используемых в производстве бытовой техники и строительстве металлом.

Машины и оборудование

Отопительные и вентиляционные системы

Алюминиевые сплавы серий 3000, 5000 и 6000 обладают хорошей термической проводимостью. В комбинации с высокой прочностью эти сплавы являются хорошим выбором для применения в системах обогрева и вентиляции. Эти системы включают следующие компоненты, в которых применяют алюминиевые сплавы:

  • компрессоры;
  • конденсеры/испарители;
  • расширительные клапаны;
  • вентиляторы;
  • трубы.

Свойства алюминия, которые важны для отопительных и вентиляционных систем:

  • высокая теплопроводность;
  • высокий контактный коэффициент;
  • малая плотность;
  • высокая коррозионная стойкость.

Основные химические свойства алюминия

С химической точки зрения алюминий является чрезвычайно сильным восстановителем, имеющим способность в чистом виде быть высоко активным веществом. Основное условие – убрать оксидную пленку.

Алюминий способен вступать в реакции с:

  • щелочными соединениями;
  • кислотами;
  • серой;
  • галогенами.

Алюминий не взаимодействует в обычных условиях с водой. Йод – единственный из галогенов, с которым у металла происходит реакция без нагревания. Для взаимодействия с прочими требуется увеличение температуры.

Рассмотрим несколько примеров, показывающих химические свойства данного металла. Это уравнения, иллюстрирующие взаимодействие с:

  • щелочами: 2Al + 6H2O + 2NaOH = Na[Al(OH)4] + 3Н2;
  • кислотами: AL + HCL = AlCL3 + H2;
  • серой: 2AL + 3S = AL2S3;
  • галогенами: AL + Hal = ALHal3.

Основным свойством алюминия считается его способность восстанавливать иные вещества из их соединений.

Реакции его взаимодействия с оксидами иных металлов хорошо показывают все восстановительные свойства вещества. Алюминий прекрасно выделяет металлы из различных соединений. Примером может служить: Cr2O3 + AL = AL2O3 + Cr.

Металлургическая промышленность активно использует эту способность алюминия. Методика получения веществ, которая основывается на данной реакции, называется алюминотермия. Химическая индустрия использует алюминий чаще всего для получения иных металлов.

Потребительские товары

Алюминий в больших объемах применяется при изготовлении различных компонентов, деталей и корпусов многих потребительских изделий, которые окружают нашу жизнь – бытовых товаров, например, холодильников, морозильников, посудомоечных машин. Холодильники и морозильники содержать холодильные агрегаты, которые, как упоминалось выше, также содержат значительное количество алюминия. Важными свойствами алюминия для потребительских товаров являются:

  • эстетические свойства;
  • коррозионная стойкость;
  • прочность;
  • высокая теплопроводность (для холодильных агрегатов).

Раскисление стали

Для удаления кислорода из расплавленной стали в расплав добавляют так называемые раскислители. В качестве раскислителя часто применяют алюминий, а также марганец и феррокремний.

Обычно алюминий добавляют в расплавленную сталь в виде 10-килограммовых брусков. Для раскисления одной тонны стали требуется около одного килограмма алюминия. Марки алюминия для раскисления устанавливает ГОСТ

Свойства алюминия, которые определяют его применение в металлургической промышленности как раскислителя стали:

  • активно реагирует с кислородом в расплавленной стали;
  • стоимость;
  • влияние на металлургию стали.

Источник

Медицина

Оборудование и инструменты

Анодированный алюминий широко применяется для изделий и деталей в медицинском и зубоврачебном оборудовании, в том числе:

  • Внутренняя отделка больничных палат и медицинских кабинетов
  • Инструменты, которые способны выдерживать регулярную стерилизацию в автоклаве
  • Больничные кровати, носилки, коляски и другие средства для перемещения пациентов
  • Оборудование для медицинского кислорода
  • Зубоврачебное оборудование и инструменты
  • Рентгеновские аппараты
  • Оборудование для диализа.

Упаковка лекарств

Алюминиевая фольга является непревзойденным барьером, который надежно защищает лекарства от микроорганизмов, солнечного света, кислорода и других газов. Поэтому эта фольга является основным материалом для защитной упаковки лекарств и фармацевтических материалов.

Лекарственные таблетки в алюминиевой упаковке

Влияние алюминия на организм человека

Алюминий в медицине

Несмотря на то, что в больших количествах алюминий вреден для здоровья человека, он находит широкое применение в лечении ряда заболеваний.

На основе алюминия изготавливаются препараты, которые обладают обволакивающим, обезболивающим, адсорбирующим и антацидным действием. Антацидные свойства алюминия используются для снижения кислотности желудочного сока, поскольку он очень активно связывается с соляной кислотой. Показанием в данном случае может быть, например, гастрит с повышенной кислотностью (гиперацидный гастрит). Препараты алюминия находят как внутреннее, так и наружное применение.

Роль алюминия в организме человека.

Алюминий играет очень важную роль — он принимает участие в процессе регенерации (восстановления) эпителиальной и соединительной тканей, поддержания крепости костей, в образовании пептидов и фосфатных комплексов. Алюминий влияет на функцию околощитовидных желез, оказывает как активизирующее, так и тормозящее действие на пищеварительные ферменты. Человек употребляет алюминий с такими продуктами, как: овсяные хлопья, зерна ржи, зерна пшеницы, мука, горох,

рисовая крупа, картофель, киви, капуста, морковь, яблоки.

Недостаток алюминия в организме человека

Дефицит микроэлемента в организме – это настолько редкое явление, что вероятность его развития сводится к нулю.

С каждым годом количество алюминия в рационе человека стремительно возрастает.

Соединение поступает с продуктами питания, водой, пищевыми добавками (сульфатами), медикаментами, иногда – с воздухом. В медицинской практике за всю историю зафиксировано несколько единичных случаев недостаточности вещества в организме человека. Таким образом, актуальной проблемой XXІ века выступает скорее перенасыщение ежедневного меню элементом, чем развитием его недостаточности.

Несмотря на это, рассмотрим к каким последствиям приводит дефицит алюминия в организме.

  • Общая слабость, потеря сил в конечностях.
  • Замедление роста, развития детей и подростков.
  • Нарушение координации движений.
  • Разрушение клеток, тканей и потеря их функциональности.

Данные отклонения возникают, если человек регулярно не получает суточную норму алюминия (30-50 микрограмм). Чем скуднее рацион и меньше потребление соединения, тем интенсивнее проявляются симптомы и последствия нехватки.

Избыток алюминия опасен для здоровья

Излишек микроэлемента токсичен.

Повышенное содержание алюминия опасно для здоровья человека, поскольку снижается иммунитет, а порой возникают необратимые изменения в организме, которые резко сокращают продолжительность жизни.

Характерные признаки излишка микроэлемента: снижение гемоглобина, уменьшение числа эритроцитов в крови, кашель, потеря аппетита, запоры , нервозность, психические расстройства, нарушения речи, ориентации в пространстве, помутнение рассудка. провалы памяти, конвульсии.

Помните, алюминий относится к категории иммунотоксичных микроэлементов, поэтому для сохранения здоровья нужно ежедневно следить за количеством поступающего соединения в организм.

Если алюминий считается имунотоксичным элементом для организма человека, мы решили выяснить пути попадания алюминия в организм человека.

Практическая часть: железо

Опыт «Исследование содержания железа в яблоках».
Сначала провожу опыт на красном яблоке. Разрезал красное яблоко пополам, рассмотрел поперечный срез красного яблока.

Через некоторое время одна из половинок яблока, не смазанная лимонным соком потемнела, а та, что была «защищена» лимонным соком, осталась белой.

Разрезал лимон. Одну половинку яблока смазал лимонным соком, а вторую половинку красного яблока положил на тарелку срезом вверх. То же самое, в той же последовательности проделал с зелёным яблоком. Положил обе половинки зелёного яблока на тарелку срезом вверх и стал наблюдать за изменениями.

Вывод. Потемнение происходит из-за окисления железа, которое содержится в яблоках, кислородом воздуха. Кислота, которая содержится в лимонном соке, защищает срез яблока от окисления и замедляет процесс окисления.

Я заметил, что срезы красного яблока почти совсем не потемнели, значит, железа в зелёных яблоках содержится больше и они полезнее.

Заключение

Наша жизнь немыслима без металлов. В нашей творческой работе, посвящённой железу и алюминию, я расширил свои знания об этих элементах, простых веществах металлах их свойствах и применении.

Роль железа и алюминия в развитии и становлении технической культуры человечества исключительно велика. Твёрдость, пластичность, ковкость сделали их незаменимым материалом для изготовления орудий труда и производства. Выглянув на улицу, мы видим сотни автомашин, каждая из которых сделана из железа. Из сплавов железа или алюминия изготавливают тросы, мосты, рельсы, трамваи, поезда, и наконец, самолёты. Везде металлы!… Ну и в нас самих есть эти металлы. Они используются для осуществления различных процессов в организме.

В нашей теоретической части мы охарактеризовали строение и свойства железа и алюминия, применение их в медицине и описали, что бывает при избытке и недостатке ионов этих элементов.

В результате проделанной работы мы сделали выводы:

Ионы железа и алюминия оказывают жизненно важное влияние на организм человека.

Ионы алюминия в большом количестве опасны для здоровья. Поэтому следует в алюминиевой посуде только готовить, а не хранить продукты питания. Не увлекаться употреблением таблеток от изжоги.

Ионы железа благоприятно влияют на организм человека. Поэтому необходимо употреблять продукты питания богатые железом. Такие как, хурма , яблоки, грецкие орехи.

Список использованной литературы

  1. Горынин И. В. и др. Алюминиевые сплавы. Применение алюминиевых сплавов. Справочное руководство. Москва «Металлургия», 1978 г.
  2. Хэтч Дж. Е. Алюминий. Свойства и физическое металловедение. Справочник. Москва, «Металлургия», 1989 г.
  3. Рабинович В. А., Хавин З. Я. Краткий химический справочник.
  4. Краткая химическая энциклопедия. «Советская энциклопедия», 1963 г.
  5. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. «Химия», 1981 г.
  6. Венецкий С. И. Рассказы о металлах
  7. Беккерт М.. Железо. Факты и легенды.
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]