Выпрямители. Как и почему.
Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему щастью. На очереди у нас – подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете – тогда пжалста.
Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор – на схеме обозначается похожим как на рисунке,
Выпрямитель – его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.
а) – простой диод. б) – диодный мост. Состоит из четырех диодов, включенных как на рисунке. в) – тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).
Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:
Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl – сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.
Далее – пара-тройка постулатов. – Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так. – Под нагрузкой напряжение немного проседает, а насколько – зависит от конструкции трансформатора, его мощности и емкости конденсатора. – Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.
Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground – земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее – общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой – минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения – если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так – если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто – двуполярным двухуровневым.
Ну а теперь к делу.
1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.
2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, много большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.
3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.
4. Мостовая схема двуполярного выпрямителя.
Для многих – наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух – всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.
5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход – если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.
Читать также: Рулевое управление переднего адаптера к мотоблоку
6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания – они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам – 0,5А, то нам и нужны два блока питания – +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.
7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три – тройное и т.д.
Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:
Для однополупериодного выпрямителя формула несколько отличается:
Двойка в знаменателе – число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.
Во всех формулах переменные обзываются так: Cф – емкость конденсатора фильтра, мкФ Ро – выходная мощность, Вт U – выходное выпрямленное напряжение, В f – частота переменного напряжения, Гц dU – размах пульсаций, В
Для справки – допустимые пульсации: Микрофонные усилители – 0,001. 0,01% Цифровая техника – пульсации 0,1. 1% Усилители мощности – пульсации нагруженного блока питания 1. 10% в зависимости от качества усилителя.
Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.
Одними из самых распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий (постоянный по направлению движения носителей, но переменный по мгновенной величине) ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт и выпрямители большой мощности (киловатты и больше)).
Принцип работы выпрямителя
Структурная схема выпрямителя показана ниже:
Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя). Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток , как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.
Собственно выпрямителем является та его часть, которая обведена на рисунке выше пунктиром и состоит из трансформатора и выпрямительного устройства.
В этом подразделе рассматриваются выпрямители малой мощности, которые необходимы для обеспечения постоянным напряжением всяких устройств в областях управления, регулирования, усилителях тока, генераторах малой мощности и так далее. Как правило, они питаются от однофазного переменного напряжения 220 или 380 В частотою 50 Гц.
Преимущества применения
Использование выпрямителей пользователями выгодно по следующим причинам:
- Устанавливаются требуемые основные параметры выходного напряжения.
- Повышается качество поступающего электропитания.
- Обеспечивается высокий коэффициент полезного действия оборудования.
- Снижается пульсация напряжения.
- Выпрямительное устройство можно использовать для однофазной или трехфазной сети в зависимости от его структурной схемы.
- Высокая эффективность преобразующих устройств сочетается с компактностью и относительно небольшим весом. В некоторых моделях предусмотрена даже возможность удаленного управления.
- Выпрямитель в большинстве случаев имеет незначительное реактивное сопротивление.
Нулевая схема выпрямления
Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на так называемой нулевой схеме. Хотя она сейчас встречается относительно редко (о чем речь пойдет далее), знание физических процессов, которые происходят в этой схеме, очень важны для понимания дальнейшего материала.
Нулевая схема выглядит так:
Трансформатор Тр имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а напряжения на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.
Рассмотрим, как возникает пульсирующее напряжение на нагрузке. Сначала будем считать нагрузку чисто активным сопротивлением, Zн=Rн. Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток. Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке Rн. Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.
Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.
Читать также: Класс электроинструмента по электробезопасности таблица
Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:
И выпрямленное напряжение Ud будет иметь вид одинаковых полуволн, которые повторяются с периодом, вдвое меньшим, чем период переменного напряжения в сети питания (2π радиан). Для обобщения, что будет удобно, далее будем считать, что период изменения выпрямленного напряжения меньше 2π в m раз и равняется 2π/m (в нашем случае m-2). Если нагрузка активное сопротивление Rн, то и ток в нем id, будет повторять кривую напряжения.
Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны. Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.
Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:
Мостовая схема
Этот электронный популярный выпрямитель относится к категории двухполупериодных. Мостовая схема является одной из наиболее распространённых.
При переменном напряжении направление тока меняется по синусоидальному закону. Это происходит дважды в течение одного цикла. При частоте 50 Герц направление меняется 100 раз за секунду. В результате работы диодного моста на выходе будут получены только положительные импульсы напряжения.
На приведённой схеме показано как через диодный мост проходит ток для каждого полупериода. Он выбирает соответствующий маршрут в зависимости от знака напряжения.
Когда на верхней клемме положительное напряжение, ток проходит на провод, ведущий к положительному выходу постоянного тока, выбирая для этого верхнюю правую ветвь диодного моста. Если напряжение отрицательное, то на указанный провод проходит ток с нижней клеммы. Аналогичным образом работает другая ветвь схемы.
При сборке такого выпрямителя нужно учитывать полярность моста. В противном случае можно подключить конденсатор неправильно, что может привести к его порче. Для этого достаточно запомнить следующее правило. В точке, куда смотрят катоды нужно подключать положительный провод, а в той, где аноды — отрицательный.
На выход с диодного моста напряжение будет поступать в виде последовательности импульсов положительной полярности. При его росте конденсатор заряжается, а при уменьшении — отдает заряд, сглаживая импульсы. В результате на выходе схемы образуется постоянное напряжение.
Преобразователь, состоящий из диодного моста, можно сделать самостоятельно из четырёх радиодеталей или воспользоваться готовым. В последнем случае он является цельным элементом с обозначениями на каждом выходе, необходимыми для правильного подключения.
Выпрямительный мост или схема Гретца
Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):
В этом случае первые полупериоды будут работать, например, диоды D2 и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:
Мостовая схема кроме того имеет менее сложный, более легкий и дешевый трансформатор. Как мы увидим далее, у нее есть еще несколько преимуществ.
Интересно, что эта схема появилась исторически раньше нулевой однако распространения не получила, потому что имела во-первых четыре диода вместо двух. Однако главным было не их количество, а то что при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение. На то время полупроводниковых диодов еще не было, а вакуумные или ртутные имели значительное падение напряжения при прохождении прямого тока, что существенно понижало коэффициент полезного действия. Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую ( в этом при желании можно усмотреть проявление одного из диалектических законов – развитие по спирали).
Что такое выпрямитель
Это устройство на входе получает синусоидальный сигнал и преобразует его в постоянное напряжение нужной величины. Важно понимать, что результат на выходе в большинстве случаев не является ровной прямой линией. Фактически речь идёт о сигнале, который близок к ней. Его получают в результате сглаживания импульсов.
Обычно выпрямление напряжения происходит в два этапа. На первом поступаемый переменный ток преобразуют таким образом, чтобы он приобрел нужную амплитуду. Преобразования осуществляются с помощью трансформатора. На втором этапе происходит выравнивание колебаний напряжения.
Процесс выпрямления основан на явлении односторонней проводимости. При этом ток в одном направлении может проходить, а в другом — нет. Раньше для этого применяли вакуумные приборы или синхронизирующие машины, но сейчас подобные методы не используют. В современных выпрямляющих устройствах устанавливаются полупроводниковые диоды.
Каждое такое устройство состоит из трёх блоков: трансформатора, выпрямителя и схемы для сглаживания (фильтра). Первый предназначен для регулировки уровня выходного напряжения. У него на входе и на выходе используется переменное напряжение. Выпрямитель отсекает отрицательные импульсы, а на выход подаёт только положительные.
Сглаживание обычно выполняется с помощью конденсатора. При повышении напряжения на его обкладках накапливается заряд, а при снижении он снимается с них. Таким образом, резкие изменения сглаживаются, делая выходное напряжение приемлемым для потребляющего оборудования. Сигнал не выравнивается полностью, но становится пригодным по своим параметрам для используемого электричество оборудования. Качество выполненной работы характеризует коэффициент выпрямления. Обычно это отношение прямого тока прибора к обратному. Но такой расчет приемлем для идеального устройства. Так коэффициент выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.
Выпрямители, основу которых составляют полупроводниковые элементы, классифицируются по таким признакам, как:
- Мощность на выходе (повышенной, средней и малой мощности).
- Фазность питания (однофазные, трехфазные, многофазные).
- Тип управления вентилями (управляемые, неуправляемые).
- Вид нагрузки (активная, активно-индуктивная, активно-емкостная).
Выбор схемы прибора зависит от нагрузки и формы потребления тока. При этом нужно учитывать такие параметры выпрямителей, как:
- ток;
- напряжение;
- коэффициент мощности;
- пульсация напряжения на выходе;
- коэффициент полезного действия.
Основные соотношения для выпрямителя
Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку Ud и среднее значение тока в нем Id.
Среднее значение выпрямленного напряжения
Запомним это выражение на дальнейшее. В нашем случае m=2 и . Поскольку Ud считаем заданным, то
Амплитудное значение вторичного напряжения
Из предыдущего выражения имеем:
Коэффициент трансформации трансформатора
Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:
Действующее значение тока вторичной обмотки
Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть
Действующее значение тока первичной обмотки
Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки :
Мощность трансформатора
Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:
Пульсация выпрямленного напряжения
Пульсирующее напряжение состоит из среднего значения Ud и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:
Где: l – полупериод π/m;
Наибольшую амплитуду будет иметь первая гармоника U(1)m, поэтому определим только ее, предположив, что k=1:
Заменив получим:
Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:
Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.
Средний ток диодов
Как мы уже видели диоды работают по очереди – каждый из них проводит в среднем половину общего тока , который есть в нагрузке. Поэтому каждый из диодов должен быть рассчитан на ток Iв = Id/2
Наибольшее обратное напряжение на диоде
В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение:
Двухполупериодный выпрямитель более распространен, чем однополупериодный, это связано с многочисленными преимуществами такой схемы. Чтобы объяснить, в чем именно заключается преимущество, следует обратиться к теоретическим основам электротехники.
В первую очередь рассмотрим отличие двухполупериодного выпрямителя от однополупериодного, для этого нужно понять принцип работы каждого из них. Примеры схем с осциллограммами дадут наглядное представление о преимуществах и недостатках этих устройств.
Однополупериодный преобразователь
Ниже приведена типичная схема подобного устройства с минимумом элементов.
Читать также: Как выкрутить прокручивающийся болт
Схема: простейший преобразователь
Обозначения:
- Tr – трансформатор;
- DV- вентиль (диод);
- Cf – емкость (играет роль сглаживающего фильтра);
- Rn – подключенная нагрузка.
Теперь рассмотрим осциллограмму в контрольных точках U1, U2 и Un.
Осциллограмма, снятая в контрольных точках U1, U2 и Un
Пояснение:
- в контрольной точке U1 отображается диаграмма снятая на входе устройства;
- U2 – диаграмма перед емкостным сглаживающим фильтром;
- Un – осциллограмма на нагрузке.
Временная диаграмма наглядно показывает, что после вентиля (диода) выпрямленное напряжение представляется в виде характерных импульсов, состоящих из положительных полупериодов. Когда происходит такой импульс, накапливается заряд емкостного фильтра, который разряжается во время отрицательного полупериода, это позволяет несколько сгладить пульсации.
Недостатки такой схемы очевидны – это низкий КПД, в следствии высокого уровня пульсаций. Но несмотря на это, устройства такого типа находят свое применение в цепях с низким токопотреблением.
Принцип действия двухполупериодной схемы
Рассмотрим два варианта реализации двухполупериодного преобразователя (выпрямителя): балансный и мостовой. Схема первого показана на рисунке ниже.
Простейший неуправляемый балансный преобразователь на двух диодах с использованием трансформатора со средним выводом
Используемые элементы:
- Tr – трансформатор, у которого имеются две одинаковые вторичные обмотки (или одна с отводом по середине);
- DV1 и DV2 – вентили (диоды);
- Cf – емкостной фильтр;
- Rn – сопротивление нагрузки.
Приведем сразу для наглядности осциллограмму в контрольных точках.
Диаграмма прибора балансного типа
- U1 – осциллограмма на входе;
- U2 – график перед емкостным фильтром;
- Un – диаграмма на выходе устройства.
Данная схема – это два совмещенных однополупериодных преобразователя, то есть на два раздельных источника приходится одна общая нагрузка. Результат работы такого устройства наглядно демонстрирует график U2. Из него видно, что в процессе используются оба полупериода, что и дало название этим преобразователям.
Осциллограмма наглядно демонстрирует преимущества такого устройства, а именно, следующие факты:
- частота пульсаций на выходе устройства удваивается;
- уменьшение «провалов» между импульсами допускает использование меньшей фильтрующей емкости;
- двухтактный преобразователь обладает большим КПД, чем однополупериодный.
Теперь рассмотрим мостовой тип, он изображен на рисунке ниже.
Схема: Пример использования диодного моста
Осциллограмма устройства мостового типа практически не отличается от балансного, поэтому приводить ее нет смысла. Основное преимущество такой схемы – нет необходимости использовать более сложный трансформатор.
Видео: Двухполупериодный выпрямительный мост
Преобразователи, где используется полупроводниковый диодный мост, широко применяются как в электротехнике (например, в аппаратах для сварки, где номинальный ток может доходить до 500 ампер), так и радиоэлектронике, в качестве источника для слаботочных цепей.
Заметим, что помимо полупроводниковых можно использовать и вакуумные диоды – кенотроны (ниже показан пример схемы такого устройства).
Схема: преобразователь на двуханодном кенотроне 6Ц4П
Собственно, представленная схема – это классическая реализация балансного преобразователя двухполупериодного типа. На сегодняшний день вакуумные диоды практически не применяются, их заменили полупроводниковые аналоги.
История создания
В 1873 году британским учёным Фредериком Гутри была предложена схема выпрямления, основанная на использовании вакуумных диодов. В следующем, 1874 году, Карл Фердинанд Браун из Германии изобрёл точечный твердотельный выпрямитель.
В 1904 году Джон Флемминг создал качественный ламповый диод, который в дальнейшем служил основой для создания рассматриваемых устройств. Спустя 2 года был придуман кристаллический детектор. В тридцатых годах проводились активные исследования эффектов, которые возникали на границе между кристаллами и металлическими деталями. На их основании в 1939 года было обнаружено явление p-n перехода. Одновременно было раскрыто влияние тех или иных примесей на тип проводимости (электронный или дырочный).
Выпрямительный мост в том виде, в котором он сейчас известен, создан польским электротехником Каролем Поллаком. Позже, но независимо от него, такое же открытие было сделано Лео Гретцем. Иногда в технической литературе используется название, данное в честь последнего — схема Гретца.
В заключение следует сказать, что принцип построения выпрямляющего устройства может использоваться самый разный. Но любой из них обеспечивает на выходе напряжение, которое можно назвать постоянным лишь условно. Выпрямитель выдает однонаправленное пульсирующее напряжение. В большинстве случаев его требуется сглаживать фильтрами.
Как организовать двухполярное питание
Сочетая балансную схему и мостовую, можно получить преобразователь, который будет давать на выходе двухполярное питание с общей (нулевой) точкой. Причем, для одного она будет отрицательной, а для другого – положительной. Такие устройства широко применяются в БП для цифровой радиотехнике.
Схема: пример преобразователя с двухполярным выходом
Многофазные выпрямители
Обычно в электросети бывает однофазное или трёхфазное электричество. Однако в такой отрасли, как электротехника используют и многофазное напряжение. Речь идёт о ситуации, когда количество фаз больше трёх. В этом случае применяются выпрямители, которые называются N-фазными.
С ними работают также, как и с трёхфазными. Практически всегда для этой цели используют мостовые схемы в нужном количестве. Классификация выпрямителей для этого случая предусматривает устройства, раздельные для каждой фазы, объединённые кольцом или звездой, а также последовательные.
Как реализовать удвоение напряжения
Ниже представлена схема, позволяющая получить на выходе устройства напряжение, вдвое выше исходного.
Схема с удвоением напряжения
Для такого устройства характерно, что два конденсатора заряжаются в разные полупериоды, а поскольку они расположены последовательно, то, по итогу, на «Rn» суммарное напряжение будет вдвое выше, чем на входе.
В преобразователе с таким умножителем можно применять трансформаторы с меньшим напряжением вторичной обмотки.
Использование операционных усилителей
Как известно, у диодов вольтамперная характеристика нелинейная, создавая однофазный прецизионный (высокоточный) выпрямитель двухполупериодного типа на микросхеме ОУ, можно существенно снизить погрешность. Помимо этого, имеется возможность создать преобразователь, позволяющий стабилизировать ток на нагрузке. Пример схемы такого устройства показан ниже.
Схема: простой стабилизатор на операционном усилителе
На рисунке изображен простейший стабилизатор тока. Используемый в нем ОУ – это управляемый по напряжению источник. Такая реализация позволяет добиться, чтобы ток на выходе преобразователя не зависел от потери напряжения на нагрузке Rн и диодном мосту D1-D4.
Если требуется стабилизация напряжения, схему преобразователя можно незначительно усложнить, добавив в нее стабилитрон. Он подключается параллельно сглаживающей емкости.
Кратко об управляемых преобразователях
Нередко требуется управлять напряжением на выходе преобразователя, не изменяя входное. Для этой цели наиболее оптимальным будет применение управляемых вентилей, пример такой реализации показан ниже.
Простой тиристорный преобразователь (на управляемых вентилях)
Однополупериодный выпрямитель
Схема выпрямителя с конденсатором также считается одной из наиболее простых. Она выглядит следующим образом:
Как можно увидеть на схеме, выпрямитель переменного электрического тока с конденсатором снабжен еще трансформатором, позволяющим получать нужное напряжение. На этом этапе оно остаётся переменным, но меняет амплитуду. Выпрямительное действие основано на работе диода и конденсатора. На обкладки конденсатора попадают только положительные полупериоды синусоиды, поскольку отрицательные не проходят через диод.
На верхнем графике изображена синусоида напряжения, поступающего в выпрямитель на представленной схеме. На нижнем показано, каким будет это напряжение в результате прохождения через диод.
Заряд на обкладках конденсатора растёт при увеличении напряжения. При его уменьшении до нуля он начинает стекать, компенсируя скачки. На выход поступает постоянное напряжение. В схеме применяют для этой цели электролитический конденсатор с большой емкостью. Считается, что лучшие преобразователи для бытовой аппаратуры должны иметь ёмкость не меньше 2200 микрофарад.
Трехфазный выпрямитель
Мы рассматривали различные реализации однофазных двухполупериодных преобразователей, но подобные устройства используются и для трехфазных источников. Ниже, в качестве примера, показано устройство, созданное по схеме Ларионова.
Пример реализации схемы Ларионова Осциллограмма на выходе схемы Ларионова
Как показывает расположенный выше график, реализация мостовой схемы между парами фаз позволяет получить на выходе незначительные пульсации. Благодаря этому фильтрующую емкость можно существенно снизить, или вообще обойтись без нее.
Полупериодный трёхфазный выпрямитель
Такие электротехнические устройства принимают сигналы от каждой из трёх фаз и от нуля. Схема выглядит следующим образом:
Дополнительно для сглаживания применяется конденсатор. Подобный метод используется и в однофазном выпрямителе, но в трехфазном сглаживание получается более качественным из-за сдвига фаз относительно друг друга.
Проектирование
Расчет даже простого двухполупериодного преобразователя является непростой задачей. Существенно упростить ее можно используя специальное программное обеспечение. Мы рекомендуем остановить выбор на программе Electronics Workbench, которая позволяет выполнить схематическое моделирование аналоговых и цифровых электрических устройств.
Смоделировав в этой программе двухполупериодный выпрямитель можно получить наглядное представление о принципе его работы. Встроенные формулы позволяют рассчитать максимальное обратное напряжение для диодов, оптимальную емкость гасящего конденсатора и т.д.