Углеродистая сталь благодаря доступной стоимости и высоким прочностным характеристикам относится к широко распространенным сплавам. Из таких сталей, состоящих из железа и углерода и минимума других примесей, изготавливают различную машиностроительную продукцию, детали колов и трубопроводов, инструменты. Широкое применение эти сплавы находят и в строительной сфере.
Калиброванный круг из углеродистой стали чаще всего используется в судостроении и машиностроении
Изменение структуры при добавлении углерода
Показатели прочности и пластичности зависят от структуры и ее изменений при увеличении содержания углерода.
При доле до 0,2% образуется феррит и третичный цементит, дальнейшее увеличение приводит к образованию эвтектоидного феррита и цементита (перлита). Значение показателя перлита постепенно повышается и при углероде 0,8% содержится только перлит. Если содержание более 0,8% появляются иглы вторичного цементита и перлит.
Образование цементита происходит до 2% углерода, при этом снижается прочность из-за хрупкости цементитной сетки по границам перлитных зерен. При превышении этого значения формируется эвтектическая смесь.
Сущность процесса улучшения стали
После закалки стали в ней преобладают структуры мартенсита. Высокий отпуск стали заключается в нагреве, как минимум, на 20-40°C ниже точки Ac1 (см. Диаграмму железо-углерод), но не ниже 500°C, выдержке и контролируемом охлаждении детали.
Улучшение сталей на диаграмме железо-углерод
На втором этапе улучшения сталей – процессе высокого отпуска стали – происходит диффузионный распад мартенсита до образования сорбита отпуска (см. Элементы теории термической обработки). Сорбит отпуска имеет однородную и дисперсную структуру.
Новые свойства и преимущества сплава
Углерод в составе стали дает ей дополнительные преимущества, прежде всего это:
- достаточная твердость поверхностного слоя и относительная мягкость внутреннего слоя;
- хорошая обрабатываемость;
- долговечность;
- доступная цена.
С увеличением доли углерода возрастает твердость, прочность и уменьшается пластичность, следовательно, чем его больше, тем труднее процесс обработки резанием, хуже показатели деформации и сваривания. Исходя из этого выделяют следующие виды стали:
- Низкоуглеродистые, с долей менее 0,25%. Они достаточно пластичны, легко поддаются деформации и обработке.
- Среднеуглеродистые, с долей 0,3-0,6%. Этот вид также пластичен, имеет средний показатель прочности.
- Высокоуглеродистые, с долей 0,6-2%. С низкой вязкостью и высоким показателем прочности. Сварка производится только с предварительным разогревом до 225 градусов.
Помимо основных механических свойств, увеличение содержания углерода дает повышение порога хладноломкости.
Другие параметры классификации
Классификация углеродистых сталей возможна по уровню очищения от вредных примесей. Выделяют такие группы сплавов:
- обыкновенного качества (В);
- качественные (Б);
- повышенного качества (А).
К категории В относят стали, соответствующие определенным механическим характеристикам. Они отличаются более доступной стоимостью, не подвергаются обработке под давлением или термической. Справы категорий А и Б можно подвергать различным деформациям, и для них производитель прописывает состав и все свойства.
Существует классификация по сфере применения:
- конструкционные – используются для изготовления изделий разного назначения;
- инструментальные – применяются для изготовления различных инструментов.
В маркировке углеродистой стали встречаются обозначения «сп», «пс» и «кп». Они указывают на степень ее окисления и являются еще одной классификацией сплавов:
- «сп» – спокойные сплавы с содержанием до 0,12% кремния, отличаются ударной вязкостью, однородной текстурой и химическим составом; основной недостаток – в менее качественной поверхности изделий;
- «пс» – полуспокойные сплавы с содержанием кремния 0,07–0,12%, которые отличаются равномерным распределением примесей;
- «кп» – кипящие углеродистые стали с содержанием кремния менее 0,07%, которые отличаются неоднородной структурой.
Достоинства кипящих сталей:
- доступная стоимость (за счет незначительного содержания добавок);
- высокая пластичность;
- хорошая обрабатываемость и податливость обработке при помощи пластической деформации.
Применение углеродистой стали
Сферы применения зависят от механических свойств, и, следовательно, от того, сколько углерода в стали. С показателем 0,7-1,3% углеродистую сталь используют для изготовления режущих и ударных инструментов. Маркируют их буквой «У», последующая цифра характеризует долю, например, У13. Чем выше показатель, тем больше влияние углерода на механические свойства стали.
Низкоуглеродистые стали разделяют на подгруппы в зависимости от назначения:
- Низкоуглеродистые: 05, 08, 10. Благодаря своей пластичности используются в холодной штамповке для изготовления шайб, прокладок, кожухов и иных деталей.
- Низкоуглеродистые: 15, 20, 25. Такое значение углерода в составе стали дает повышенную твердость и достаточный задел вязкости, применяются для изготовления деталей малого размера (кулачков, толкателей, малонагруженных шестерней).
- Среднеуглеродистые: 30, 35, 40, 45, 50, 55. Применяются для изготовления коленчатых валов малооборотных двигателей, зубчатых колес, маховиков – деталей, у которых работоспособность определяется сопротивлением усталости. Используют после нормализации и поверхностной закалки, которые повышают вязкость и пластичность, соответственно, улучшается показатель обрабатываемости.
- Высокоуглеродистые: 60, 65, 70, 75, 80, 85. Применяются для изготовления рессор, эксцентриков и пружин. Предварительно подвергаются закалке и среднему отпуску, что улучшает свойства упругости необходимые для изготавливаемых деталей.
- Котельные: 12К-22К. Используют для изготовления оборудования, эксплуатируемого при высоких температурах (сосуды и котлы для турбин и камер сгорания).
- Сталь автоматная. Нашла применение для изготовления крепежных изделий автомобилей в статических нагрузках (шпильки, гайки, болты).
Другие классификационные признаки
По способу раскисления
Различают три вида сталей: кипящие, полуспокойные, спокойные. При равном содержании углерода эти сплавы имеют одинаковые характеристики прочности и разные – пластичности.
- Для раскисления кипящих сталей (кп) применяют марганец. Для них характерны: значительная химическая и структурная неоднородность слитка. Благодаря малому содержанию кремния, стали поддаются холодной штамповке. Не применяются для создания изделий для эксплуатации в холодных климатических условиях.
- Полуспокойные (пс). Раскисляются марганцем, в ковше – алюминием.
- Спокойные (сп). Для раскисления применяются кремний, марганец, алюминий. Выход годного составляет примерно 85%. Для слитка характерна плотная однородная структура.
По качеству
- Углеродистые стали обыкновенного качества – их маркировка осуществляется по ГОСТу 380-2005. Они обозначаются индексом Ст и цифрой – номером марки. Чем больше номер, тем выше содержание углерода, больше твердость и меньше пластичность. В конце ставится обозначение способа раскисления: кп, пс, сп. Используются в изготовлении неответственных строительных конструкций, крепежных элементов, труб, листов, фланцев.
- Качественные углеродистые конструкционные стали обозначают двузначными числами, равными количеству углерода в сотых долях процента. В конце указывается индекс раскисления (кроме спокойных сталей).
Влияние других примесей
Как и углерод, иные химические элементы в составе стали влияют на ее механические свойства:
- кремний – используется как активный раскислитель;
- марганец – снижает влияние кислорода и серы, уменьшает стойкость к нагрузкам;
- сера и фосфор – увеличивают показатель красноломкости, относятся к категории вредных примесей;
- титан – улучшает показатели прочности и пластичности;
- хром – повышает жаростойкость и стойкость к стиранию;
- никель – улучшает вязкость и упругость;
- медь – оказывает влияние на стойкость к коррозии.
Механические свойства стали полностью зависят от ее состава и наличия тех или иных примесей. Именно эти характеристики необходимо учитывать при применении стали в промышленном производстве. Некоторое негативное влияние содержания элементов можно снизить дополнительными методами улучшения – термическим упрочением поверхности (цементация) или добавлением антикоррозийной защиты, проще говоря – гальваника, покрытие которой увеличивает срок службы изделия.
Технологии производства
Изготовление углеродистой стали занимается металлургический вид промышленности. Материал получают путем переработки заготовок из чугуна с сокращением содержания серы и фосфора, а также снижение углерода до оптимальной концентрации. Существуют три вида технологий производства сплава:
1. В печах конвертерного типа.
В основе методики был метод Бессемера – продувка жидкого чугуна при помощи воздушных масс. В ходе процедуры углерод окисляется и удаляется из сплава, после этого слитки чугуна становились сталью. В результате в металле оставались фосфор и сера, повышалась прочность, но при этом сталь становилась более пластичной и быстрее старела. Метод перестал использоваться ввиду низкого качества получаемого материала.
Вместо этого, углеродистую сталь стали изготавливать в печах конвертерного типа. Вместо воздуха стали использовать кислород. В результате получается материал, близкий по качеству к сплавам из мартеновских установок.
2. В мартеновских установках.
Применение мартеновских печей подходит для различных марок углеродистой стали. В основе метода лежит выжигание углерода из сплавов чугуна при помощи воздушных масс и за счет добавления руд железа и ржавых металлических изделий. Изготовление происходит внутри установок, к которым подключается прогретый воздух и горючий газ.
В плавильную камеру загружают все необходимое сырье для изготовления углеродистой стали, которое затем нагревается до температуры плавления. Такие камеры могут вмещать до 500 тонн и выдерживать температуры до 1700 градусов. В них происходит выжигание углерода при помощи газовой среды, шлака и расплавленного металла. В результате получается сплав, который вытекает через заднюю стенку установки.
3. В печах, работающих от электричества.
Электродуговые или индукционные печи позволяют изготовить качественную углеродистую сталь практически без примесей, более чистую и жаростойкую. Процесс производства происходит при помощи вакуума, благодаря чему получаются более качественные заготовки.
Данный метод является более дорогим, поэтому используется только при особой необходимости.
Хромомарганцевые стали
Совместное легирование сталей хромом (0,9…1,2 %) и марганцем (0,9…1,2 %) позволяет получить достаточно высокую прочность и прокаливаемость (например, 40ХГ), однако они имеют пониженную вязкость, пониженный порог хладноломкости (от 20 0С до минус 60 0С). Введение титана снижает склонность к перегреву, а добавление бора увеличивает прокаливаемость.
Таблица 10 — Механические свойства некоторых легированных улучшаемых сталей
Марка стали | Прокаливается диаметр, мм | sigmaв, МПа | sigma0,2, МПа | d, % | y, % | KCU, МДж/м2 |
30X 40X 40XФА 40ХГТР 30ХГС 40ХН 30ХН3А 40ХН2МА 36Х2Н2МФА 38ХН3МФА | 25-35 25-35 25-35 50-75 50-75 50-75 75-100 75-100 более 100 более100 | 900 1000 900 1000 1100 1000 1000 1100 1200 1200 | 700 800 750 800 850 800 800 950 1100 1100 | 12 10 10 11 10 11 10 12 12 12 | 45 45 50 45 45 45 50 50 50 50 | 0,7 0,6 0,9 0,8 0,4 0,7 0,8 0,8 0,8 0,8 |
Улучшаемая сталь
Примеры улучшаемых сталей:
Углеродистые улучшаемые стали: сталь 30, сталь 35, сталь 40, сталь 45, сталь 50.
Легированные улучшаемые стали: 40Х, 45Х, 40ХР, 40ХН, 40ХНА, 40ХНМА, 30Х2Н4МА, 38ХН3МА, 38Х2НМА, 30ХГСА, 30ХГС-Ш.
Некоторые улучшаемые стали пригодны для поверхностной закалки (плазменной и индукционной), в частности — сталь 45.
Основным свойством улучшаемых сталей
является
прокаливаемость
, которая зависит от химического состава стали. Изделие должно полностью прокаливаться насквозь (
сквозное улучшение
). Стали с малой способностью к сквозному улучшению пригодны для изделий с небольшим поперечным сечением. Другое важное свойство улучшаемых сталей — предел текучести (после улучшения стали), требования к которому предъявляются в зависимости от марки стали и диаметра изделия.
После улучшения гарантируются следующие свойства сталей: временное сопротивление σВ от 55 до 150 кгс*мм-2, удлинение δ5 от 6 до 50%, поперечное сужение ψ=30-60% (по данным ). Изменение значений этих свойств в зависимости от температуры отпуска иллюстрируется «диаграммами улучшения» (пример на рисунке).
Термическая обработка
. Улучшаемые стали поставляются потребителю в горячекатанном или нормализованном состоянии. После механической обработки до окончательных размеров и получения деталей проводятся улучшение сталей или поверхностная закалка.
Хромоникелемолибденованадиевые стали
Кроме молибдена, добавляют ванадий, который способствует получению мелкозернистой структуры. Стали марок 38ХН3МФ и 36Х2Н2МФА применяют для деталей больших сечений (1000…1500 мм и более). В сердцевине после закалки образуется бейнит, а после отпуска — сорбит. Стали обладают высокой прочностью, пластичностью и вязкостью, низким порогом хладноломкости. Молибден, присутствующий в стали, повышает ее теплостойкость. Эти стали можно использовать при температурах 400…450 0С при изготовлении наиболее ответственных деталей турбин, компрессоров, для которых требуется материал особой прочности в крупных сечениях (поковки валов и цельнокованных роторов турбин, валы высоконапряженных турбовоздуходувных машин, детали редукторов и т.д.).
Источник