Металлизация отверстий печатных плат в домашних условиях — пошаговая инструкция

С необходимостью этого сталкиваются в основном те, кто использует в конструировании образцы гетинакса с двухсторонним фольгированием. Чтобы впоследствии на плате собрать рабочую схему, нужно добиться качественного эл/контакта между ее токопроводящими слоями. Судя по отзывам на соответствующих форумах, существует несколько апробированных и относительно несложных для исполнения в домашних условиях методик металлизации отверстий печатных плат.

Это можно сделать по-разному, используя те или иные реактивы и приемы. У каждого опытного мастера-любителя – своя излюбленная технология. Рассмотрим наиболее распространенные в домашних условиях способы серебрения и графитирования отверстий. Они привлекательны не только простотой исполнения, но и доступностью хим/препаратов.

Технология металлизации

С помощью этого метода прямой металлизации отверстий можно добиться качественных результатов при изготовлении двухсторонних печатных плат в домашних условиях. Главным условием 100% прямой металлизации отверстий в этой технологии, является правильное приготовления активатора поверхности диэлектрика на основе аммиачного комплекса гипофосфита меди и соблюдение некоторых правил при активации поверхности этим раствором.
Как приготовить этот активатор на основе гипофосфита меди для прямой металлизации отверстий, подробно описано в этой статье.

Процесс прямой металлизации

Далее технология металлизации будет описана виде фото-галереи с некоторыми пояснениями. Все фотки кликабельны. Также наведя на фото мышкой, можно прочитать описание к ней во всплывающем окне.

Сразу хочу сказать, эта платка тестовая и делалась только для описания этого процесса.

Сверление отверстий

Итак берем текстолит, подготавливаем поверхность для нанесения фоторезиста (с одной стороны). Клеим фоторезист на одну сторону, берем фотошаблон с центрами будущих отверстий платы, засвечиваем, проявляем фоторезист (этот этап я к сожалению не смог сфотографировать, но думаю тут все понятно). Как только проявили фоторезист, с другой стороны платы клеим скотч для защиты меди и травим плату в персульфате аммония или хлорном железе:

Платка вытравилась, нужно смыть фоторезист. Для этого кидаем плату в едкий натр (NaOH) или средство «Крот» на 10 минут, затем фоторезист легко смывается с поверхности платы. Можно не смывать фоторезист на этом этапе, а смыть его после сверловки отверстий. Как только смыли фоторезист, то на медной фольге видны центры будущих отверстий, вот по ним сверлим отверстия на станочке или вручную. После сверловки отверстий, с другой стороны текстолита будут заусенцы, которые нужно будет удалить:

Для чего зашкуриваем плату с обоих сторон мелкой шкуркой, потом круговыми движениями иголки, поправляем отверстия и тем самым убираем оставшиеся заусенцы. После этого опять зашкуриваем печатную плату мелкой шкуркой:

Активация диэлектрика

На следующем этапе берем персульфат аммония и приготовленный раствор активатора на основе гипофосфита меди. Сначала травим плату в персульфате аммония 20 секунд (для придания меди миро-шероховатости), затем не касаясь меди пальцами, промываем плату в воде и опускаем в раствор активатора на 1 минуту. Платку в растворе нужно постоянно покачивать, чтобы отверстия гарантированно наполнились активатором.

Вынимаем плату из активатора, даем стечь лишнему раствору с поверхности и не стряхивая плату (самое главное, чтобы отверстия были наполнены активатором) производим термический удар (нагрев) любым доступным способом при температуре 150 градусов в течении 10 минут. Самое главное в этом процессе, следить за тем, чтобы раствор не выкипел из отверстий, а равномерно испарился.

Плата в конце процесса термоудара потемнеет, что является признаком удачного разложения гипофосфита меди на металлическую медь, на которую и будет производится прямая металлизация:

Подготовка платы перед гальваникой

После термоудара даем плате остыть, затем если необходимо, прочищаем отверстия иголкой и обязательно моем моющем средством. До печатной платы руками не касаемся:

Гальваника печатной платы

Опускаем плату в гальваническую ванну и начинаем процесс прямой металлизации. Держим плату в гальванике около 2 часов, постоянно покачивая плату, ток 2 ампера на дм.кв. Процесс покрытия медью заканчиваем, вытаскиваем плату и смотрим на качество металлизации, она 100%. Зашкуриваем поверхность мелкой шкуркой:

Формируем дорожки печатной платы

Теперь перейдем собственно к изготовлению самой печатной платы. Для этого клеим фоторезист на одну сторону печатной платы, готовим фотошаблон без центров отверстий, ровняем его на плате по отверстиям, засвечиваем и проявляем. Смотрим, что бы отверстия были качественно накрыты тентами фоторезиста (если тенты порваны, то заливаем отверстия лаком), иначе после травления в хлорном железе, металлизация в этих местах протравится и вся работа пойдет насмарку:

После проявки фоторезиста, засвечиваем платку еще раз, для более качественного закрепления фоторезиста. Заклеиваем скотчем обратную сторону платы и травим в персульфате аммония или хлорном железе.

Вообще этот этап можно пропустить, то есть изначально клеить фоторезист с обоих сторон, засвечивать и проявлять, затем травить обе стороны платы в хлорном железе одновременно:

Данная статья опубликована на сайте whoby.ru. Постоянная ссылка на эту статью находится по этому адресу https://whoby.ru/page/metgfmed

Читайте статьи на сайте первоисточнике, не поддерживайте воров.

Как сделали одну сторону, то же самое делаем с другой стороны печатной платы. Приклеиваем фоторезист, выравниваем шаблон по отверстиям, засвечиваем, проявляем. После проявки смотрим на качество тентов над отверстиями, если некоторые порваны, то корректируем (лаком), затем засвечиваем еще раз:

Заклеиваем скотчем и травим в персульфате или хлорном железе, Затем берем едкий натр (NaOH):

И смываем фоторезист с обеих сторон платы. Смотрим качество металлизации, протравы под тентами (если они есть). Все в порядке, теперь плату нужно покрыть оловом.

Лужение платы сплавом розе

Что бы олово качественно покрыло проводники, нужно подготовить поверхность меди. Для этого кидаем плату в раствор лимонной кислоты 20 мл воды, чайная ложка лимонки, для очистки от окислов.

Затем готовим раствор, в котором будем лудить плату. Для чего берется один пузырек глицерина 20 мл. 100 мл воды и чайная ложка лимонной кислоты. Затем этот раствор нагревается до кипения и в него кладется сплав Розе:

Опускаем плату в раствор и движениями губки покрываем проводники оловом. На этом этапе главным является заполнение всех отверстий оловом. Затем вытаскиваем плату из раствора и греем над газом до расплавления сплава Розе. Как только сплав расплавится, быстро ударом стряхиваем лишний припой из отверстий. Важно, что бы не осталось припоя в отверстиях, для этого смотрим на просвет:

Еще раз опускаем платку в глицериновый раствор, но уже без сплава Розе в нем и нагреваем до кипения. Движениями губки удаляем лишний припой с проводников. Если одно или несколько отверстий опять заполнятся оловом, то повторяем операцию со встряхиванием. В результате получилась вот такая симпатичная платка с металлизацией отверстий:

Заключение

Как видите, ни чего сложного в прямой металлизации отверстий с помощью гипофосфита меди нет. Платы получаются достойного качества.

Советую для начала опробовать эту технологию прямой металлизации сначала на маленьких платах, чтобы появился опыт, а уже потом делать более сложные платы.

Основоположником данного метода активации является группа химиков из Новосибирского Института химии твердого тела и механохимии возглавляемая Олегом Ивановичем Ломовским. Она получила последний патент на эту технологию.

В развитии этой технологии была проведена большая работа пользователем JIN с форума vrtp.ru (ссылка на тему форума). Благодаря которой этот метод вышел в массы радиолюбителей.

НТД о металлизации

По IPC H:d (aspect ratio) определяется, как отношение толщины (печатных плат) к минимальному диаметру просверленного отверстия (диаметру сверла).

По отечественному ГОСТ 23 751 -86 — H:d (или обратная величина — γ) определялась, как отношение толщины (печатных плат) к минимальному диаметру металлизированного отверстия, т.е. как минимум на 0,05 мм меньше (в вышедшем ему на замену ГОСТ Р 53429-2009) упоминание об «aspect ratio» отсутствует вообще.

Примечание. Тем не менее для достаточно глубокого понимания содержания статей и документов надо понимать, что отечественная норма соответствовала меньшей норме по IPC, особенно для малых диаметров (например H:d=20:1 или γ=0,05 по отечественным НТД для диаметра сверла 0,15 мм соответствует H:d=13,5:1 по IPC).

Еще один параметр, характеризующий металлизацию отверстий – распределение наносимой меди по длине отверстия (TP – англоязычная аббревиатура). Этот параметр позволяет оценить возможность техпроцесса металлизации (особенно для малых диаметров отверстия, использующих прямую металлизацию) наносить достаточную толщину столба металлизации без неадекватного сужения просвета отверстия. К сожаления отечественные НТД никак не специфицируют эту величину. На рис. 94 показаны два варианта оценки распределения:

— по IPC –наиболее точный;

— оперативный (TPMIN), часто используемый технологами – практиками для быстрой оценки.

Рис 94. Варианты расчета распределения толщины металлизации

ГОСТ 23752 специфицирует минимально допустимую среднюю толщину металлизации для двухсторонних печатных плат – 20 мкм, для многослойных печатных плат – 25 мкм.

Гипофосфит меди (раствор активатора)

Дигидрат гипофосфит диаминмеди два

Раствор: Гипофосфит кальция (кальций фосфорноватистокислый) — 20 гр. [Ca(PH2O2)2] Медный купорос (Медь 2 сернокислая 5вод) — 25 гр. [CuSO4·5H2O] (кстати в магазинах для садоводов продается) Аммиак (аптечный 10%), = 10%-й водный раствор гидроксида аммония — 50 мл. (NH3+H20) Дистиллированная вода 100 мл. Моющее средство «Капля» — 3 гр. (вода, ПАВ, хлорид натрия, консервант, парфюмерная композиция, лимонная кислота, СИ 19140, 42090)

1. Медный купорос 25гр + вода 50ml = долго (+осадок) 2. Гипофосфит кальция 15гр + вода 50ml = долго 3. 1 вливаем в 2. (перемешать) = +осадок 4. фильтр (осадок выкинуть) 5. + 50 мл. аптечного 10% аммиака 6. + 5 грамм гипофосфита кальция 7. + моющее средство (жидкое мыло)- 3 гр

Плату зачищаем с абразивным моющим средством без фанатизма, промываем тщательно.

По окончании промывки вода должна «липнуть» к заготовке, стекая с нее крайне неохотно.

Тщательно стряхиваем, опускаем в активатор горизонтально , не касаемся дна.

Несколько раз 2-3 сек вынимаем горизонтально на поверхностью.

Жидкость должна равномерно затечь во все отверстия

Наклоняем и краем касаемся края емкости, чтобы излишки активатора стекли обратно (без фанатизма).

Закрывает емкость с активатором наклоняем под разными углами, стараясь дать возможность активатору растечься как можно равномернее.

Потом кладем в печку выставляем 125С и держим 12-15 минут.

Потом 175С и держим 7-8минут открываем дверку и даем остыть мин до 100С.

Моющим средством без абразива и мягкой губкой легко отмываем (пока без воды).

Мочалкой продавливаем моющее средство сквозь все отверстия спокойно не торопясь , стараясь ничего не пропустить.

Далее струей воды, промываем все отверстия. не нужно отмывать все до единого пятна.

Активатор храниться долго, главное чтобы аммиак из него не испарился, то есть храним герметично (в темноте). Значит емкость лучше — бутылка где минимум не занятого жидкостью пространства. У меня хранился на балконе месяц до -10С доходило. Раз 10 пользовался без проблем (свойства активатора сохранялись).

Активатор стабилен и может храниться долгое время. В процессе использования нужно следить за тем, что бы на дне все время был осадок гипофосфита кальция и при необходимости досыпать пару грамм. Если этого не делать, могут появляться неметаллизированные отверстия.

Расчёт импеданса дифференциальных переходных отверстий

Расчёт дифференциальных п/о аналогичен одиночным, за исключением того, что теперь у нас нет калькулятора: указанные выше инструменты не считают дифференциальные п/о. Также, теперь мы можем дополнительно изменять шаг п/о в диф. паре.
Структуру возьмём ту же: 8-слойную плату толщиной 1.6 мм. Рассмотрим 9 конфигураций п/о (Рисунок 15).

Первые 3 п/о имеют зазоры 0.125 мм и отличаются лишь расположением отверстий для возвратного тока. Все п/о с 4 и далее имеют шаг 1 мм. П/о с 6 и далее имеют увеличенный антипад (0.250 мм) и отличаются отступом отверстий для возвратного тока.


Рисунок 15. Переходные отверстия.

Рассмотрим график импеданса (Рисунок 16).


Рисунок 16. Импеданс п/о во временной области.

На графике хорошо виден «горб», который соответствует вертикальному отрезку п/о — «стакану» (англ. Via barrel).

Рассмотрев частотную зависимость коэффициента отражения VIA1-3 (Рисунок 17), видим, что несмотря на хорошие показатели на целевой частоте 6 ГГц, имеется резонанс на более низких частотах. Предпочтительней улучшить via7-9, а если не получится, то via4-5, чтобы уменьшить «горб» за счёт сдвига графиков вправо.


Рисунок 17. Коэффициент отражения от входа п/о.

Уменьшим антипад у VIA9, чтобы получить зазоры 0.125 мм. Для VIA4 уменьшим шаг п/о до 0.75 мм и рассмотрим полученный результат (Рисунок 18).


Рисунок 18. Сравнение импеданса модифицированных п/о.

В частотной области виден сдвиг графика коэффициента отражения от входа вправо (Рисунок 19).


Рисунок 19. Сравнение коэффициента отражения модифицированных п/о.

электролиз

Раствор: 10 гр. медного купороса растворяется в 100 мл. воды туда доливаем 1см3 (=1мл) серной кислоты (электролит для свинцовых автомобильных аккумуляторов) = раствор серной кислоты

Блескообразующую добавку RV-T по возможности.

Электроды надо закрывать полностью

Емкость: посередине катод — МИНУС(наша плата), двигается влево / вправо (ардуина + серво двигатель на пластмассовых внутренностях CD ROMа) по бокам анод — это ПЛЮС .

Даем ток 2А из расчета на 1дм2 платы. Моя первая установка для электролиза выглядела так:

Электролит живет долго, главное следить за его чистотой (фильтровать, через ватные диски или марлю). Электролит у меня хранится в обычной пластмассовом пищевом контейнере (хранить можно где угодно).

Использовать печку для приготовления пищи понятно нельзя. Пробовал нагревать плату на плите и по неопытности пережарил плату вплоть до размягчения текстолита — вонь была ужасная. Пришлось купить обычную печку 25$ (до 250С) и сразу процесс пошел в правильном направлении. Результат после 10мин электролиза. К сожалению МИНУС был подан только на одну сторону платы (вторая была без потенциала), но надо признаться все очень даже обнадеживающе :

дырки 0.4мм

Фоткал подсвечивая снизу фонариком.

В результате надо сделать вывод, что медь в дырках осаждается, хотя и не достаточно равномерно (есть заметные проплешины).

Не нужным эффектом является также осаждение меди на всей плоской поверхности платы, увеличивая и без того достаточную толщину меди 0.35мм. Дело в том , что медь расходуется довольно интенсивно и Анод на глазах исчезает.

Может быть имеет смысл все закрывать маской из чего нибудь и оставлять только дырки?

ручная металлизация без химии

LPKF рекламирует чудо пасту для металлизации отверстий без химии, т.е. без электролиза. Просто втираем пасту в отверстия и греем плату. Но найти в интернете в открытом доступе нельзя , на али тоже естественно нет.

По запросу прислали цены для России такие:

Полный набор: 115790 Базовый набор для металлизации ProConduct € 970,00.

Или его компоненты:

116110 Паста полимерная для ProConduct 20х2,9гр. € 222,00

116159 ProConduct foil consumable set (Пленки) € 109,36

115891 LPKF — Cleaner for ProConduct(Очиститель) € 37,38

Фактор 2. Паразитная индуктивность и ёмкость

Проводники на печатной плате можно изготовить с волновым сопротивлением, лежащим в широком диапазоне, однако чаще всего это 50 Ом. С одной стороны, это связано с исторической преемственностью: импеданс 50 Ом был стандартизирован для коаксиальных кабелей как компромисс между уровнем нагрузки драйвера и потерей энергии сигнала. С другой стороны, 50-Омный проводник легко изготовить на типовой плате.
Для разработчика важным является не столько конкретное значение волнового сопротивления, сколько его постоянство на всём протяжении линии передачи.

Для того, чтобы сделать линию передачи с фиксированным значением волнового сопротивления, разработчик подбирает ширину дорожки и расстояние до опорного слоя, т.е. меняет погонную ёмкость и индуктивность линии передачи до определённой

величины.

В п/о индуктивная составляющая довольно значима. В первом приближении, мы должны, в рамках разумного, максимально снизить паразитную индуктивность, а затем менять параметры п/о для достижения заданной

емкости, и соответственно импеданса.

Чрезмерное уменьшение ёмкости п/о будет причиной локального повышения импеданса и, как следствие, отражений сигнала.

Какие ключевые слова ищем в интернете

Pcb plating foil protection film hot air convection oven pcb plating paste plumber conductive copper paste electrically conductive paste Carbon Conductive Assembly Paste Through-Hole Plating With Rivets Chemical-Free Through-Hole Plating Through-Hole Electroplating Galvanization liquid tin Immerse tin plating

No-clean, lead-free solder paste is a modified rosin based paste, which allows repeatability and consistency. The Patented Nihon Superior nickel stabilized tin/copper eutectic alloy has a melting point of 227°C. Size: 250 gram jar

Металлизация отверстий в картинках (часть ІІ, подготовка к гальванике)

Продолжение описания процесса металлизации отверстий в домашних условиях начатое в первой части.

Напоминаю: РАБОТАЕМ В ПЕРЧАТКАХ! Применительно к данному этапу ВАЖНО ПОМНИТЬ СЛЕДУЮЩЕЕ: 1. ЗАГОТОВКИ РУКАМИ КАСАТЬСЯ НЕЛЬЗЯ, ДАЖЕ В ПЕРЧАТКАХ! 2. ОТКРЫТАЯ ЕМКОСТЬ С АКТИВАТОРОМ ЯВЛЯЕТСЯ ИСТОЧНИКОМ АММИАКА! ДЕРЖИТЕ ГОЛОВУ ПОДАЛЬШЕ ОТ НЕЕ!

Приборы и инструменты: 1. Электропечь или аэрогриль. От них требуется возможность оперативно регулировать температуру. Если у вас есть термостатированная (хотя бы до +-5 градусов) печь или печь способная выдерживать температуру по заданному профилю (например, покупная/самодельная печь для пайки SMD) это даже лучше. Если такой печи нет и, в лучшем случае, имеется лишь «показометр» в виде регулятора или термометра с точностью +- пол-слона, то понадобится так же термометр способный мерять температур в диапазоне до 200 градусов. Термопара и тестер вполне подойдут.

2. Медицинский зажим (лучше длинный). Кто не в курсе, эта штука выглядит вот так:

Материалы: 1. Моющее средство с мягким абразивом.

2. Моющее средство без абразива.

Вот тот комплект моющих средств, которым я сейчас пользуюсь:

Фактор 5. Помехи в шинах питания

Помимо соседних сигнальных цепей, на качество сигнала могут оказывать помехи из внутренних слоёв.
По полигонам питания могут протекать большие токи. В силу увеличения индуктивности у краев полигонов, протекающие токи формируют краевые поля (англ. Fringing fields) по всем границам полигона, в том числе и в вырезах. Краевые поля являются источником электромагнитного излучения (англ. Edge-fired emission) в пространство. Для снижения эмиссии электромагнитного излучения, применяется правило 20H (Рисунок 8), который заключается в сужении полигона питания по отношению к полигону земли.


Рисунок 8. Краевые поля и правило 20H.

Для защиты п/о от помех, если есть возможность, необходимо увеличивать антипад на полигонах питания. Правило 20H для п/о обеспечить трудно, да и излишне, обычно рекомендуется антипад диаметром около 2 мм (Рисунок 9).


Рисунок 9. Увеличенный антипад на слоях питания

Металлизация переходных отверстий печатной платы кабельными наконечниками

Помню, в детстве, когда фольгированный гетинакс делался самостоятельно, с помощью клея «БФ» и утюга, у нас была мечта – пустотелые заклёпки.

В каком-то журнале публиковалась технология их изготовления. Предлагалось протянуть полоску фольги через коническое отверстие (подобие фильерной доски), чтобы получилась трубочка. Потом нужно нарезать трубочку и расклепать с двух сторон в плате.

Похоже, статья была неполная, потому что я до сих пор с трудом представляю, как можно реализовать её на практике в домашних условиях, начиная с изготовления фильеры.

Трудов было затрачено немало, но ничего путного так и не получилось. Конфигурация фильеры должна быть непростой, рабочая поверхность — отполированной, заготовка для неё — калёной, а самое главное – ширина полоски должна быть выдержана с довольно высокой точностью. Разрезать получающуюся трубку – ещё одна задача, да и расклепать тоже весьма непросто.

Недавно понадобилось мне сделать двустороннюю печатную плату. И не просто двустороннюю, а обязательно с переходами между слоями, так как при пайке доступа к противоположной стороне не будет. И не просто с переходами, а с достаточно мощными переходами, потому что по этим переходам предполагается протекание сравнительно больших токов.

Первой мыслью было сделать дополнительные площадки и соединить слои медными заклёпками из подходящего провода, но подсознание протестовало – решение-то неуклюжее…

но как-то не ассоциировались они у меня с заклёпками, пока у одного наконечника не свалился изолятор…

Вот тут-то всё и встало на свои места. В первый момент в голову стали приходить всякого рода развальцовки с фигурной формой рабочей части, весьма желательно, из подзакалённой стали, с отполированной поверхностью. Но, в конечном итоге, решил не заморачиваться и работать подручным инструментом.

Фактор 4. Перекрёстные помехи

Перекрёстные помехи – нежелательная передача сигнала из одной линии в соседнюю. Эта передача происходит, потому что два близко расположенных проводника имеют ёмкостную и индуктивную связь.
Характер перекрёстных помех сигнальных проводников и п/о немного отличается. В п/о у сигнала нет опорного слоя, возвратные токи текут по соседним п/о, образуя большую петлю. Перекрёстные помехи сигналов в п/о обусловлены индуктивной составляющей.

Наибольшего эффекта по минимизации перекрёстных помех можно достичь, увеличив расстояние между п/о. Однако часто тополог не располагает большим пространством.

Сближение п/о в дифференциальной паре не только уменьшает занимаемую площадь, но и положительно сказывается на помехоустойчивости [3].

Общепринятый способ по минимизации перекрёстных помех между соседними сигнальными п/о — поместить экранирующее п/о между ними. При таком способе потребуется вести сигналы с шагом около 2 мм (Рисунок 6). Если места недостаточно, можно использовать меньший шаг со сдвигом (англ. Staggered pattern), как на рисунке 7. С помощью моделирования можно подобрать идеальный угол сдвига [4].


Рисунок 6. Минимизация перекрёстных помех с помощью экранирующего п/о.


Рисунок 7. Минимизацию перекрёстных помех с помощью диагонального «шахматного» сдвига.

Перекрёстные помехи можно также снизить экзотическими методами, например, длинным стабом (за счёт смещения индуктивно-ёмкостного баланса п/о) [5]. Также помехи можно уменьшить на стадии проектирования корпуса микросхемы [6].

↑ Инструмент

Кусачки, пассатижики, керн по диаметру отверстий и молоток. Конусное шило – важный инструмент в этом деле. У меня было заточенное в незапамятные времена (сейчас даже не представляю для чего), сверло – как раз впору пришлось. Ну и самое главное – многофункциональный инструмент, в домашнем обиходе именуемый «консервная банка», играющий роль наковальни.

Эксперименты показали, что получается вполне функционально, не по заводскому, конечно, но это не важно — неровные края заклёпок скрываются под припоем.

↑ Реализация

Вставляем развальцованную трубку в плату. Лучше, если отверстие в ПП будет максимально соответствовать наружному диаметру трубки наконечника, трубка должна входить плотно, с трудом. Максимально осаживаем пальцами. Специальную трубчатую осадку с молотком применять не стал. Получающийся в результате неполного прилегания развальцовки к плате запас, как раз и идёт на развальцовку заклёпки с другой стороны платы.

Обкусываем заклёпку заподлицо с фольгой. Как показала практика, обкусывать лучше всего бокорезами с плоскими (без фаски) режущими поверхностями.

Трубка, естественно, сжимается на резе, я пробовал, перед обкусыванием, вставлять внутрь трубки кусок обмоточного провода, но результат получился не шибко складным. Оказалось, что гораздо проще вставить со стороны развальцовки подходящее конусное шило и расправить этот сжим.

Дальше совсем просто. Осталось взять керн и развальцевать получившуюся заклёпку.

Пара лёгких ударов по выступающим краям и новенькая заклёпка стоит на своём месте. Иногда, по ситуации, бывает нужно слегка расширить отверстие конусным шилом.

Обрезок наконечника — сплющенную трубку слегка сжимаем пассатижами,

Расправляем шилом, вставляем в плату и развальцовываем расправленный конец

Получаем новую заготовку для пустотелой заклёпки

А дальше – всё по кругу… Вот результат – плата односторонняя

С другой стороны

С другой стороны.

В плату вставлены как раз те детали, из за которых всё и затевалось.

Надеюсь, моя идея использования кабельных наконечников пригодится согражданам. Спасибо за внимание!

Целостность сигнала

Переходные отверстия (далее п/о, англ. via) представляют собой неоднородности в линии передачи. Как и другие неоднородности, они портят сигнал. Этот эффект слабо выражен на низких частотах, однако с увеличением частоты значительно возрастает. Часто разработчики уделяют незаслуженно мало внимания структуре переходных отверстий: они могут быть скопированы из «соседнего» проекта, взяты из даташита или вообще не заданы в САПР (настройка по умолчанию).
Перед тем как использовать рассчитанную структуру, необходимо понять, почему её сделали именно такой? Слепое повторение может только навредить.

На целостность сигнала в канале при прохождении через переходные отверстия главным образом влияют следующие факторы:

  • отражения сигнала из-за изменения волнового сопротивления;
  • деградация сигнала вследствие паразитной ёмкости и индуктивности;
  • отражения от неиспользуемого отрезка п/о при переходе на внутренний слой (далее стаб от англ. via stub);
  • перекрёстные помехи (англ. Cross talks);
  • помехи в шинах питания.

Рассмотрим подробнее причины этих эффектов и методы их устранения.

Металлизация отверстий печатных плат в домашних условиях — пошаговая инструкция

С необходимостью этого сталкиваются в основном те, кто использует в конструировании образцы гетинакса с двухсторонним фольгированием. Чтобы впоследствии на плате собрать рабочую схему, нужно добиться качественного эл/контакта между ее токопроводящими слоями. Судя по отзывам на соответствующих форумах, существует несколько апробированных и относительно несложных для исполнения в домашних условиях методик металлизации отверстий печатных плат.

Это можно сделать по-разному, используя те или иные реактивы и приемы. У каждого опытного мастера-любителя – своя излюбленная технология. Рассмотрим наиболее распространенные в домашних условиях способы серебрения и графитирования отверстий. Они привлекательны не только простотой исполнения, но и доступностью хим/препаратов.

Подготовка отверстий

Рис.95. Отверстие после избыточной плазменной обработки.

Известны 3 метода подготовки отверстий:

— Перманганатная обработка (дешевая и относительно эффективная, но имеет ограничения по маркам ДЭ – совсем не травит фторпласт и плохо работает с полиимидом).

— Плазмохимическая подготовка (требует сложного инженерного обеспечения и высоко квалифицированного персонала). Для стеклотекстолита при длительном воздействии или выборе агрессивных режимов по частоте сильно утравливает ДЭ, образуя внутри отверстия «щетку» стеклянных волокон (рис.95). При этом столб металлизации частично заполненный кончиками стекловолокон приобретает увеличенное, по сравнению со сплошной медью сопротивление.

— Травление в составах с плавиковой ( или др. концентрированной) кислотой (устаревший и очень вредный для персонала метод, сегодня практически не применяется в реальном производстве).

Серебрение

Подготовительные мероприятия

Технология основана на том, что под воздействием ультрафиолета нитрат серебра (более известный как ляпис AgNO3) разлагается на компоненты, один из которых – чистый металл.

  • Отверстия в плате зачищаются.
  • Каждое из них обрабатывается раствором (25±5%) азотнокислого серебра.
  • Далее – просушка печатной платы. Чтобы ускорить течение химической реакции, целесообразно для этих целей использовать УФ-лампу. В результате на гетинаксе (в районе отверстий) останутся лишь отдельные вкрапления серебра.

Получение токопроводящего слоя

Для этого понадобится медь. Ее получают из раствора. Металл осаждается на подготовленную «основу» из серебра, тем самым обеспечивая в дальнейшем надежный эл/контакт между всеми элементами схемы.

Данный раствор крайне неустойчив, и срок его пригодности ограничен. Поэтому препарат готовить про запас бессмысленно. Только в нужном количестве и перед непосредственным применением, когда первичная обработка отверстий (серебрение) уже выполнена. Процентное соотношение компонентов в зависимости от требуемого объема раствора несложно рассчитать по приведенному рецепту.

Усиление отверстий

Выполненной металлизации достаточно лишь в случае, если при монтаже электронной схемы предполагается работать с миниатюрными радиодеталями. Но, как показывает практика, слоя хватает на один раз. Следовательно, говорить о ремонтопригодности печатной платы уже не приходится. Именно поэтому толщина металлизированного слоя увеличивается гальваническим способом, как никелирование, например.

  • «Минус» – на фольгированном покрытии платы, «плюс» – на пластинке из меди. Она располагается параллельно обрабатываемому образцу.
  • Плотность тока (А/см2) выбирается в диапазоне 0,02 – 0,3.
  • Напряжение (В): 3,5±0,5.
  • Приемлемая температура (ºС) в гальванической ванне – от 20 до 28.

Более качественный, однородный слой получается при меньшем токе. Но это увеличивает время протекания процесса металлизации отверстий.

Графитирование

Еще один несложный в исполнении способ металлизации. Отличие в том, что для первичной обработки отверстий вместо серебрения делается графитирование. Чаще всего любители используют магазинный аэрозоль CRAMOLIN «GRAPHITE». Откладывающиеся на поверхности мелкодисперсионные фракции графита достаточно вдавить в подготовленные отверстия. Это несложно сделать небольшим шпателем, скребком. Как их изготовить своими руками, пояснять не нужно.

Для удаления излишков, пока паста еще влажная, плата встряхивается. Фракции, налипшие на ее поверхность, смываются растворителем или убираются мелкой (шлифовочной) наждачкой. Остается лишь тонкой иглой прочистить отверстие.

В результате в нем получается тончайший токопроводящий слой. Такой способ удаления пасты имеет минус – не все фракции выводятся из отверстия, что уменьшает его диаметр. Более качественный результат достигается методом продувки. В домашних условиях можно задействовать пылесос.

Описанные способы металлизации отверстий – не единственные. Но именно их в свое время апробировал автор, и они доказали свою эффективность и удобство в реализации.

Фактор 1. Волновое сопротивление п/о

В идеально спроектированной плате волновое сопротивление не меняется на всем протяжении трассы, в том числе и при переходе на другой слой. В реальности это обычно выглядит примерно так:


Рисунок 1. Изменение волнового сопротивления при переходе на другой слой.

Чем лучше согласованы волновые сопротивления, тем меньше будет отражение сигнала. Как же повлиять на это?

Рассмотрим структуру п/о на плате [1].


Рисунок 2. Структура п/о на плате.

СлойЭлементСвойство
TOPПлощадка п/оПаразитная ёмкость между площадкой и полигоном питания L2
TOP-L2отрезок п/оИндуктивность
L2 (полигон питания)АнтипадАнтипад образует краевую ёмкость – емкость между стенками п/о и полигоном питания
L2-L3Отрезок п/оИндуктивность
L3 (полигон питания)АнтипадАнтипад образует краевую ёмкость – емкость между стенками п/о и полигоном питания
L3-L4Отрезок п/оИндуктивность
L4 (сигнальный)Площадка п/оПаразитная ёмкость между площадкой п/о и полигоном питания L3
L4-L5СтабИсточник шума

Изменяя элементы п/о, мы изменяем волновое сопротивление перехода. Наша цель – согласовать импеданс переходной структуры с импедансом проводников для минимизации отражений. Рассмотрим, как изменится импеданс при изменении элементов структуры п/о.

ЭлементДействиеЭлектрическое свойствоИмпеданс (результат)
Площадка п/оC↓
Диаметр п/оL↑
АнтипадC↓
Длина п/оL↑
Количество полигонов питания на пути п/оC↓
Шаг п/оC↓
Расстояние до возвратных п/оL↑
Количество возвратных п/оL↓
Заполнение отверстийЗаполняем смолой (Dk↑)С↑
Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]