Какой металл является самым легкоплавким после ртути
Самым легкоплавким среди всех известных сегодня металлов является ртуть.
Имя человека, впервые открывшего этот чудо-металл, затерялось в глубине тысячелетий, но доподлинно известно, что ртуть была знакома человечеству еще за несколько веков до нашей эры.
Сегодня уже нельзя утверждать, что ртуть – это единственный металл, существующий в жидкой фазе при условиях, которые принято считать нормальными (750,06 мм рт. ст., 25°С).
Франций, очень редкий металл, находится в жидком состоянии уже при 15 – 23o С, но изучение этого вещества очень затруднено вследствие его высокой радиоактивности и малого периода полураспада.
При чуть более высоких температурах плавятся цезий и галлий, а именно при +28,5o С и при +29,8o С, соответственно. Ртуть же по температуре плавления бьет все рекорды среди металлов.
Переход ртути из твердого состояния в жидкое происходит при минус 38,89 °С!
До середины XVIII века считалось, что ртуть может находиться только в жидком и газообразном состояниях. Наука того времени вообще не относила ртуть к металлам, несмотря на присущие ей некоторые свойства этого класса соединений. Существование ртути в твердой форме было обнаружено случайно. В 1734 году в г.
Томске наблюдатель метеостанции, конный казак Саломатов, заметил, что в очень сильный мороз в его барометре застывает ртуть. О своем наблюдении он сообщил ученым Гмелину и Миллеру, членам Академии наук Санкт-Петербурга.
Однако непоколебимая уверенность ученых мужей в том, что ртуть не может быть твердой, помешала им серьезно воспринять эту информацию.
Спустя четверть века, зимой 1759 – 1760 гг., при проведении научных опытов замерзание ртути обнаружил ученый Иосиф Адам Браун. В Санкт-Петербурге в тот день, 14 декабря 1759 года, было очень холодно. Показания термометра доходили до -37° С. Браун ставил эксперимент, целью которого было максимально возможное понижение температуры вещества.
Ученый смешал в стеклянном сосуде уличный снег с небольшим количеством азотной кислоты и поместил в эту среду ртутный термометр для измерения температуры. И тогда Браун обнаружил, что ртуть в термометре застыла.
Это было сенсационное открытие! Ведь до тех пор ни в одном научном труде не было упоминания о том, что ртуть может существовать в твердой фазе.
Опыт Иосифа Адама Брауна был воспроизведен затем академиками Ломоносовым, Цейгером и Эпинусом. Они также подтвердили факт замерзания ртути. Той же зимой, в январе 1760 года, М. В.
Ломоносов обнаружил, что ртуть в твердой форме, так же как и в жидкой, обладает свойством электропроводности.
После экспериментов Ломоносова спорный вопрос о принадлежности ртути к классу металлов был решен окончательно.
Читать также: Болгарки с регулировкой оборотов metabo
легкоплавкие металлы — Группа цв. металлов с низкой tm, включающая Zn, Cd, Hg, Sn, Pb, Bi, Ti, Sb и элементы с ослабл. металлич. св вами: Ga, Ge. [https://metaltrade.ru/abc/a.htm] Тематики металлургия в целом EN low melting metals … Справочник технического переводчика
легкоплавкие металлы — сплавы с низкой tпл, основные компоненты которых легкоплавкие металлы: Hg (tпл = 39 °С), Ga (30 °С), In (156 °С), Sn (232 °С), Bi (271 *С), Pb (327 °С), Cd (321 °С) и Zn (419 °С) … Энциклопедический словарь по металлургии
Металлы — [metals] простые вещества, обладающие в обычных условиях характерными свойствами: высокой электро и теплопроводностью, отрицательным температурным коэффициентом электропроводности, способностью хорошо отражать электромагнитные волны,… … Энциклопедический словарь по металлургии
ультрачистые металлы — высокочистые, особочистые металлы, в которых массовая доля примесей не превышает 1 • 10 3%. Основные стадии технологии производства ультрачистых металлы: получение чистых химических соединений, восстановление их до… … Энциклопедический словарь по металлургии
чистые металлы — металлы с низким содержанием примесей ( Энциклопедический словарь по металлургии
тугоплавкие металлы — металлы, у которых tпл > fFe = 1539 °С (например, Cr, V, W, Mo, Nb и др.); применяют как легирующие добавки в стали, а также в качестве основы соответствующих специальных сплавов; Смотри также: Металлы щелочные металлы … Энциклопедический словарь по металлургии
радиоактивные металлы — металлы, занимающие места в Периодической системе элементов с атомный номер больше 83 (Bi), испускающие радиоактивные частицы: нейтроны, протоны, альфа , бетачастицы или гамма кванты. В природе обнаружены: At, Ac, Np, Pa, Ро … Энциклопедический словарь по металлургии
переходные металлы — элементы Iб и VIIIб подгруппы Периодической системы. У атомов переходных металлов внутренние оболочки заполнены только частично. Различают d металлы, у которых происходит постепенное заполнение 3d (от Se до Ni), 4d (от Y до… … Энциклопедический словарь по металлургии
Читать также: Использование динисторов в регуляторах мощности
первичные металлы — металлы, полученные из руды или рудных материалов, в отличие от вторичных металлов, полученных из отходов и лома (например, первичный и вторичный Al); Смотри также: Металлы щелочные металлы чистые металлы … Энциклопедический словарь по металлургии
Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким.
Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии.
При продолжении воздействия начинает плавиться.
Наиболее низкая температура плавления у ртути — она плавится даже при -39 °C, самая высокая у вольфрама — 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.
Как происходит процесс
Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой — плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании.
Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты.
Воздействие при этом примерно одинаковое.
Когда происходит нагревание, усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки, сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.
В зависимости от градуса, при котором плавятся металлы, они разделяются на:
- легкоплавкие — до 600 °C: свинец, цинк, олово;
- среднеплавкие — от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
- тугоплавкие — от 1600 °C: хром, вольфрам, молибден, титан.
В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.
Вторая важная величина — градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.
Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.
Таблица характеристик
Металлы и сплавы — непременная основа для ковки, литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота, ограды из чугуна, ножи из стали или браслеты из меди), для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.
Читать также: Требования к молоткам и кувалдам
Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.
Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:
- алюминий — 660 °C;
- температура плавления меди — 1083 °C;
- температура плавления золота — 1063 °C;
- серебро — 960 °C;
- олово — 232 °C.
Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов; - свинец — 327 °C;
- температура плавления железо — 1539 °C;
- температура плавления стали (сплав железа и углерода) — от 1300 °C до 1500 °C.
Она колеблется в зависимости от насыщенности стали компонентами; - температура плавления чугуна (также сплав железа и углерода) — от 1100 °C до 1300 °C;
- ртуть — -38,9 °C.
Как понятно из этой части таблицы, самый легкоплавкий металл — ртуть, которая при плюсовых температурах уже находится в жидком состоянии.
Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия— 2519 °C, у железа — 2900 °C, у меди — 2580 °C, у ртути — 356,73 °C.
У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.
Максимальная температура кипения у металлов — у рения— 5596 °C. Наибольшая температура кипения — у наиболее тугоплавящихся материалов.
Бывают таблицы, в которых также указана плотность металлов. Самым лёгким металлом является литий, самым тяжёлым — осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре.
К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа — очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.
Ещё один показатель, встречающийся в таблицах — это теплопроводность металлов. Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл — серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.
Рекорды в науке и технике. Частицы и вещества
Всё известное вещество на Земле и за ее пределами состоит из химических элементов. Подсчитано, что в известной нам Вселенной имеется 1087 электронов.
Общее количество встречающихся в природе элементов – 94.
При нормальной температуре 2 из них находятся в жидком состоянии, 11 – в газообразном и 81 (включая 72 металла) – в твёрдом.
Так называемым «четвёртым состоянием материи» является плазма, состояние, при котором отрицательно заряженные электроны и положительно заряженные ионы находятся в постоянном движении.
Самая легкая и самая массивная элементарные частицы
К апрелю 1988 г. науке было известно о существовании 31 стабильной частицы, 64 мезонных мультиплетных резонансов и 52 барионных мультиплетных резонансов, что в итоге может привести к открытию 247 элементарных частиц, а также равного числа античастиц.
Наиболее массивной из общепринятых частиц является нейтральный промежуточный векторный бозон Z0 массой 92,4 ГэВ, впервые открытый в мае 1983 г.
лабораторией UA-1 Европейской организации ядерных исследований (CERN), Женева, Швейцария, работавшей на протон-антипротонном коллайдере SPS (протонный синхротрон на сверхвысокую энергию) с энергией пучка 540 ГэВ.
Самым массивным адроном считается σ-мезонный резонанс (6S) (масса равна 11,02 ГэВ, время жизни – 8,3·10–24 с), coстоящий из красивого кварка (b-кварка) или нижнего кварка (d-кварка) и его антикварка.
Он был впервые обнаружен двумя группами, работавшими на электронном накопительном кольце Корнельского университета, Итака, штат Нью-Йорк, США.
Согласно современной теории элементарных частиц, масса гравитона, фотона и нейтрино должна быть равна нулю.
По оценкам, соответствующим различным космологическим теориям, верхние пределы массы этих частиц составляют 7,6·10–67 г для гравитона, 5,3·10–60 г для фотона и 3,2·10–32 г для нейтрино (ср. масса электрона равна 9,10939·10–28 г).
Наиболее и наименее стабильные
Из «теории великого объединения», описывающей слабые, электромагнитные и сильные взаимодействия, следует, что протон нестабилен. Однако, согласно результатам экспериментов, опубликованным в 1986 г.
, время жизни протона в случае наиболее вероятного способа его распада (на позитрон и нейтральный пион) имеет нижний предел в 3,1·1032 лет, что в 40 с лишним раз больше максимального срока жизни, предсказываемого теорией.
Наиболее нестабильными или самыми короткоживущими частицами являются два барионных резонанса N (2220) и N (2600), время жизни которых составляет 1,6·10–24 с, тогда как теоретически предсказанное время жизни промежуточных векторных бозонов W± и Z0 составляет 2,6·10–25 с.
Новейшие частицы
Новейшими частицами являются χ-мезонные резонансы (2Р), об открытии которых объявила в 1987 г. объединённая группа Колумбийского и Нью-Йоркского (г. Стони-Брук, штат Нью-Йорк, США) университетов.
Ученые использовали электронные накопительные кольца Корнельского университета, Итака, штат Нью-Йорк, США.
Мезоны состоят из b-кварка и его антикварка и имеют массу 10,235 ГэВ (χb0), 10,255 ГэВ (χb1) и 10,269 ГэВ (χb2).
Наиболее зловонное вещество
Самыми дурно пахнущими из 17 тыс.
зарегистрированных до сих пор в мире веществ являются, хотя это, возможно, субъективно, этилмеркаптан (C2H5SH) и бутилселеномеркаптан (C4H9SeH).
Запах каждого из них напоминает смесь запахов гниющей капусты, чеснока, лука, подгоревших тостов и канализационных газов.
Самые дорогие духи
Розничная цена духов определяется скорее рекламными соображениями, а не стоимостью компонентов и упаковки.
Чикагская начала продавать с марта 1984 г.
одеколон под названием «Андрон», содержащий следовые концентрации аттрактанта феромона андростенола, по цене 97 долл. за 1 г.
Самый сильный яд
Болезнь риккетсиоз, или Ку-лихорадка, может быть вызвана единственным микроорганизмом. Однако только в одном случае из тысячи она приводит к смерти.
Около 10 микроорганизмов Francisella tularenesis (ранее Pasteurella tularenesis) могут вызвать заболевание туляремией, называемой по-разному: щелочной болезнью, болезнью Франсиса или «лихорадкой от оленьей мухи». Она вызывает смерть в 10 случаях из тысячи.
Самый сильный нервно-паралитический газ
Газ VX в 300 раз токсичнее фосгена (СОСl2), использовавшегося во время первой мировой войны. Он создан в Экспериментальных лабораториях химической защиты, Портон-Даун, Великобритания, в 1952 г.
Заявки на патент были поданы в 1962 г. и опубликованы только в феврале 1974 г. В них значилось, что этим веществом является этил-S-2-диисопропиламиноэтилметилфосфонотилат.
Летальная доза равна 10 мг·мин/м3 в воздухе или 0,3 мг внутрь.
Самый сильный абсорбент
18 августа 1974 г.
исследовательская служба Министерства сельского хозяйства США объявила о создании суперабсорбента «H-span», в состав которого входят 50% производного крахмала и по 25% акриламида и акриловой кислоты. После обработки железом абсорбент в состоянии поглотить массу воды, в 1300 раз большую его собственной массы.
Самый мелкий порошок
Пределом измельчения является твёрдый гелий, который, как было установлено еще в 1964 г., должен представлять собой моноатомный порошок.
Самое ядовитое искусственное вещество
TCDD, или 2, 3, 7, 8-тетрахлородибензо-п-диоксин, открытый в 1872 г., смертелен в концентрации 3,1·10–9 моль/кг, что в 150 тыс. раз сильнее аналогичной дозы цианида.
Самое тугоплавкое вещество
Карбид тантала ТаС0-88 плавится при температуре 3990°С.
Вещество с наименьшей плотностью
Веществом с наименьшей плотностью являются кремниевые аэрогели, в которых сферы связанных атомов кремния и кислорода образуют разделённые воздушными прослойками длинные пряди. В феврале 1990 г. в Национальной лаборатории им.
Лоуренса, Ливермор, штат Калифорния, США, был получен самый легкий из таких аэрогелей с плотностью всего 0,005 г/см3.
Это вещество предполагается использовать в космических исследованиях при сборе микрометеоритов, присутствующих в хвостах комет.
Вещество с самой высокой температурой сверхпроводимости
В марте 1988 г. в Исследовательском центре компании ИБМ в Сан-Хосе, штат Калифорния, США, при температуре –148°С было получено явление сверхпроводимости. Проводником служила смесь оксидов таллия, кальция, бария и меди – Тl2Са2Ва2Сu3Оx
.
Самое сладкое вещество
Талин, полученный из шелухи катемфе (Thaumatococcus Daniellii), обнаруженного в Западной Африке, в 6150 раз слаще 1%-ного раствора сахарозы.
Самое горькое вещество
Горький вкус вилекса (denatonium benzoate) ощущается при растворении одной его части в 100 миллионах частей раствора.
Ранее опубликовано:
Книга рекордов Гиннеса, 1998 г.
3 февраля 2002 года
Электронная версия:
© НиТ. Cтатьи, 1997
Источник: https://n-t.ru/tp/in/rnt01.htm
Легкоплавкие металлы список — masakarton.com
H | He | |||||||||||||
Li | Be | B | C | N | O | F | Ne | |||||||
Na | Mg | Al | Si | P | S | Cl | Ar | |||||||
K | Ca | Sc | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
Rb | Sr | Y | Tc | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||
Cs | Ba | La | * | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | ||
Fr | Ra | Ac | ** | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | |||
* | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
** | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
Тугоплавкие металлы | Расширенная группа тугоплавких металлов[1] |
См. также: Тугоплавкие сплавы
Тугоплавкие металлы
— класс химических элементов (металлов), имеющих очень высокую температуру плавления и стойкость к изнашиванию. Выражение тугоплавкие металлы
чаще всего используется в таких дисциплинах как материаловедение, металлургия и в технических науках. Определение тугоплавких металлов относится к каждому элементу группы по разному.
Основными представителями данного класса элементов являются элементы пятого периода — ниобий и молибден; шестого периода — тантал, вольфрам и рений. Все они имеют температуру плавления выше 2000 °C, химически относительно инертны и обладают повышенным показателем плотности.
Благодаря порошковой металлургии из них можно получать детали для разных областей промышленности.
Определение
Большинство определений термина тугоплавкие металлы
определяют их как металлы имеющие высокие температуры плавления. По этому определению, необходимо, чтобы металлы имели температуру плавления выше 4,000 °F
(2,200
°C
). Это необходимо для их определения как тугоплавких металлов[2]. Пять элементов — ниобий, молибден, тантал, вольфрам и рений входят в этот список как основные[3], в то время как более широкое определение этих металлов позволяет включить в этот список ещё и элементы имеющие температуру плавления 2123 K (1850 °C) — титан, ванадий, хром, цирконий, гафний, рутений и осмий. Трансурановые элементы (которые находятся за ураном, все изотопы которых нестабильны и на земле их найти очень трудно) никогда не будут относиться к тугоплавким металлам[4].
Физические свойства
Свойства четвёртой группы элементов
Название | Ниобий | Молибден | Тантал | Вольфрам | Рений |
Температура плавления | 2750 K (2477 °C) | 2896 K (2623 °C) | 3290 K (3017 °C) | 3695 K (3422 °C) | 3459 K (3186 °C) |
Температура кипения | 5017 K (4744 °C) | 4912 K (4639 °C) | 5731 K (5458 °C) | 5828 K (5555 °C) | 5869 K (5596 °C) |
Плотность | 8,57 г·см³ | 10,28 г·см³ | 16,69 г·см³ | 19,25 г·см³ | 21,02 г·см³ |
Модуль Юнга | 105 ГПа | 329 ГПа | 186 ГПа | 411 ГПа | 463 ГПа |
Твёрдость по Виккерсу | 1320 МПа | 1530 МПа | 873 МПа | 3430 МПа | 2450 МПа |
Температура плавления этих элементов самая высокая, исключая углерод и осмий. Данное свойство зависит не только от их свойств, но и от свойств их сплавов.
Металлы имеют кубическую сингонию, исключая рений, у которого она принимает вид гексагональной плотнейшей упаковки.
Большинство физических свойств элементов в этой группе существенно различается, потому что они являются членами различных групп[5][6].
Сопротивление к деформации ползучести является определяющим свойством тугоплавких металлов. У обычных металлов деформация начинается с температуры плавления металла, а отсюда деформация ползучести в алюминиевых сплавах начинается от 200 °C
, в то время как у тугоплавких металлов она начинается от 1500 °C
. Это сопротивление к деформации и высокая температура плавления позволяет тугоплавким металлам быть использованными, например, в качестве деталей реактивных двигателей или при ковке различных материалов[7][8].
Химические свойства
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его. |
На открытом воздухе подвергаются окислению. Эта реакция замедляется в связи с формированием пассивированного слоя. Оксид рения является очень неустойчивым, потому что при пропускании плотного потока кислорода его оксидная плёнка испаряется. Все они относительно устойчивы к воздействию кислот.[5]
Индий
В качестве простого вещества индий очень светлый, ковкий и мягкий настолько, что даже оставляет след, если им провести по бумаге. Он также является одним из наиболее легкоплавких металлов, но воздействуют на него только температуры выше 157 °C. Закипает он при 2072 градусах.
Как и галлий, индий не образует собственных месторождений, но содержится в различных рудах. Благодаря своей рассеяности в природе металл довольно дорогой. Его применяют в микроэлектронике, для изготовления легкоплавких сплавов, припоев, жидкокристаллических экранов для техники.
Смотреть галерею
Применение
Тугоплавкие металлы используются в качестве источников света, деталей, смазочных материалов, в ядерной промышленности в качестве АРК, в качестве катализатора.
Из-за того, что они имеют высокие температуры плавления, они никогда не используются в качестве материала для выплавки на открытом месте. В порошкообразном виде материал уплотняют с помощью плавильных печей.
Тугоплавкие металлы можно переработать в проволоку, слиток, арматуру, жесть или фольгу.
Вольфрам и его сплавы
Основная статья: Вольфрам
Вольфрам был найден в 1781 г. Шведским химиком Карлом Вильгельмом Шееле. Вольфрам имеет самую высокую температуру плавления среди всех металлов — 3422 °C
(6170 °F
)
Вольфрам.
Рений используется в сплавах с вольфрамом в концентрации до 22 %
, что позволяет повысить тугоплавкость и устойчивость к коррозии. Торий применяется в качестве легирующего компонента вольфрама. Благодаря этому повышается износостойкость материалов.
В порошковой металлургии компоненты могут быть использованы для спекания и последующего применения. Для получения тяжёлых сплавов вольфрама применяются никель и железо или никель и медь. вольфрама в данных сплавах как правило не превышает 90 %.
Смешивание легирующего материала с ним низкое даже при спекании[9].
Самый тугоплавкий металл на земле
Любознательных людей наверняка интересует вопрос, какой металл самый тугоплавкий? Прежде чем дать на него ответ, стоит разобраться с сами понятием тугоплавкости.
Все известные науки металлы имеют разную температуру плавления в связи с различной степенью устойчивости связей между атомами в кристаллической решетке.
Чем слабее эта связь, тем меньшая температура требуется, чтобы ее разорвать.
Самые тугоплавкие металлы в мире используются в чистом виде или в составе сплавов для производства деталей, которые работают в экстремальных термических условиях.
Они позволяют эффективно противостоять высоким температурам и значительно продляют эксплуатационный период агрегатов.
Но стойкость металлов данной группы к термическому воздействию заставляет металлургов прибегать к нестандартным методам их производства.
Какой металл самый тугоплавкий?
Самый тугоплавкий металл на Земле был открыт в 1781 году шведским ученым Карлом Вильгельмом Шееле. Новый материал получил название вольфрам. Шееле удалось синтезировать триокись вольфрама путем растворения руды в азотной кислоте.
Чистый металл был выделен двумя годами позже испанскими химиками Фаусто Фермином и Хуаном Хосе де Элюар. Новый элемент не сразу получил признание и был взят на вооружение промышленниками.
Дело в том, что технологии того времени не позволяли обрабатывать столь тугоплавкое вещество, поэтому большинство современников не придали особого значения научному открытию.
Вольфрам был оценен гораздо позже. На сегодняшний день его сплавы используются при производстве термостойких деталей для различных отраслей промышленности. Нить накаливания в газоразрядных бытовых лампах также изготавливается из вольфрама.
Также он применяется в аэрокосмической промышленности для производства ракетных сопел, используется в качестве многоразовых электродов в газодуговой сварке.
Кроме тугоплавкости вольфрам также обладает высокой плотностью, что позволяет использовать его для изготовления высококачественных клюшек для гольфа.
Соединения вольфрама с неметаллами также широко применяется в промышленности.
Так сульфид используется в качестве термостойкой смазки, способной переносить температуры до 500 градусов по Цельсию, карбид служит для изготовления резцов, абразивных дисков и сверл, способных обрабатывать самые твердые вещества и переносить высокие температуры нагрева. Рассмотрим, наконец, промышленное получение вольфрама. Самый тугоплавкий металл имеет температуру плавления 3422 градуса по Цельсию.
Как получают вольфрам?
В природе чистый вольфрам не встречается. Он входит в состав горных пород в виде триоксида, а также вольфрамитов железа, марганца и кальция, реже меди или свинца. По оценкам ученых содержание вольфрама в земной коре в среднем составляет 1,3 грамма на одну тонну.
Это достаточно редкий элемент по сравнению с другими видами металлов. вольфрама в руде после добычи обычно не превышает 2%.
Поэтому добытое сырье отправляется на обогатительные фабрики, где методом магнитной или электростатической сепарации массовая доля металла доводится до отметки 55-60%.
Процесс его получения разделяется на технологические этапы. На первом этапе выделяют чистый триоксид из добытой руды. Для этого используют метод термического разложения.
При температурах от 500 до 800 градусов по Цельсию все лишние элементы расплавляются, а тугоплавкий вольфрам в виде оксида легко можно собрать из расплава.
На выходе получается сырье с содержанием оксида шестивалентного вольфрама на уровне 99%.
Полученное соединение тщательно измельчают и проводят восстановительную реакцию в присутствии водорода при температуре 700 градусов по Цельсию. Это позволяет выделить чистый металл в виде порошка.
Далее его спрессовывают под высоким давлением и спекают в водородной среде при температурах 1200-1300 градусов по Цельсию.
После этого полученная масса отправляется в электрическую плавильную печь, где под воздействием тока нагревается до температуры свыше 3000 градусов. Так вольфрам переходит в расплавленное состояние.
Для окончательной очистки от примесей и получения монокристаллической структурной решетки используется метод зонной плавки.
Он подразумевает, что в определенный момент времени расплавленной находится только некоторая зона из общей площади металла.
Постепенно двигаясь, эта зона перераспределяет примеси, в результате чего в конечном итоге они скапливаются в одном месте и их легко можно удалить из структуры сплава.
Готовый вольфрам поступает на склад в виде штабиков или слитков, предназначенных для последующего производства нужной продукции. Для получения сплавов вольфрама все составные элементы измельчают и смешивают в виде порошка в необходимых пропорциях. Далее производится спекание и плавка в электрической печи.
Основным составным веществом алюминевого сплава является, как становится ясно из названия, алюминий. К другим, наиболее распространенным элементами, которые входят в состав сплавов на основе алюминия, можно отнести медь, железо, цинк… |
Наиболее легкоплавкие металлы: свойства, особенности, физические характеристики
Температура плавления – важная характеристика, которая чаще всего применяется именно к металлам. Она зависит от многих физических свойств веществ – их чистоты и кристаллической структуры. Какой металл наиболее легкоплавкий: Li, Al, Hg, Cu? Давайте выясним, кто из них действительно может называться таковым.
Наиболее легкоплавкие металлы
Плавление – процесс перехода из твердого состояния в жидкое. Он происходит под воздействием тепла, но зависит еще от ряда физических факторов, например от давления. Важную роль в том, насколько легко и тяжело вещество поддается плавлению, также играет его состав, размер кристаллов в решетке и прочность связей между атомами.
Температура плавления металлов очень разнится и может иметь даже минусовые значения. Она колеблется от -39 до +3410 градусов Цельсия. Тяжелее всего в жидкость превращаются молибден, вольфрам, хром, титан. Для этого процесса их требуется нагреть до температуры не менее 2000 градусов.
Наиболее легкоплавкими металлами являются галлий, ртуть, литий, олово, свинец, цинк, индий, висмут, таллий. Подробнее о некоторых из них читайте далее.
Ртуть
Полезный во многих сферах, но ядовитый металл был известен еще до нашей эры. Ртуть использовали античные и средневековые медики для лечения венерических и многих других заболеваний, алхимики пытались сделать из нее золото. Сегодня она применяется в электротехнике, приборостроении и органической химии.
Руть – это наиболее легкоплавкий металл на планете. При нормальных комнатных условиях она всегда жидкая, так как температура ее плавления составляет -39 градуса. Ее пары очень опасны, поэтому ртуть содержат только в контейнерах и специальных стеклянных колбах. На организм она действует как яд, отравляя его и выводя из строя нервную, иммунную, дыхательную и пищеварительную системы.
Галлий
Вторым в списке наиболее легкоплавких металлов находится галлий. Он становится жидкостью при температуре выше 29,5 градусов Цельсия, и размягчить его можно просто подержав немного в руках. При нормальных условиях галлий очень хрупкий, легко поддается механическому воздействию и окрашен в светло-серебристый, несколько голубоватый оттенок.
Металл очень рассеян в земной коре и не встречается в виде самородков. В природе его находят в составе различных минералов, таких как гранат, мусковит, турмалин, хлорит, полевой шпат. Кроме того, он содержится в морской воде. Галлий используют в высокочастотной электронике, для изготовления зеркал и различных сплавов.
Олово
Олово плавится от температуры выше 231 градуса по Цельсию. Это пластичный и мягкий металл, светло-серебристого цвета. Оно существует четырех аллотропных модификациях, две из них появляются только при высоком давлении.
Олово довольно рассеяно в природе, но может образовывать собственные минералы, например, станнин и касситерит. Его используют в качестве покрытия для металлов для усиления их устойчивости к коррозии, а также для производства жести, фольги, разнообразных сплавов, посуды и деталей для музыкальных инструментов.
Литий
Литий – наиболее легкоплавкий металл, который становится жидкостью при температуре 180 градусов. Он мягкий, хорошо поддается ковке и механической обработке. Он относится к щелочным металлам, но проявляет активность гораздо хуже остальных представителей группы. Он медленно реагирует с влажным воздухом, а в сухой атмосфере остается практически стабильным
Металл встречается в сподумене, лепидолите, в месторождениях с оловом, висмутом и вольфрамом, содержится в морской воде и в звездных космических объектах. Литий часто используется для изготовления гальванических элементов, аккумуляторов, применяют в качестве окислителя, а также в пиротехнике. В сплавах с кадмием, медью и алюминием используется в космической, военной и авиационной технике.