Особенности подключения и схема реверса электродвигателя


Электромагнитный пускатель являет собой низковольтное комбинированное электромеханическое приспособление, специализированное для запуска трёхфазных электродвигателей, для обеспечения их постоянной работы, для отключения питания, а в некоторых случаях и для охраны цепей электродвигателя и иных подключённых цепей. Определённые двигатели обладают функцией реверса мотора.

По сущности, электромагнитный пускатель — это улучшенный, изменённый контактор. Но более компактный, нежели контактор в обычном понятии: легче по весу и рассчитан непосредственно для работы с двигателями. Определённые модификации магнитных пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Для управления запуском мотора путём замыкания контактов устройства предназначается клавиша или слаботочная группа контактов:

  • с катушкой на определённое напряжение;
  • в некоторых случаях — и то и другое.

В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. При выключении питания катушки возвратная пружинка перемещает якорь в противоположное положение — цепь размыкается. Каждый контакт находится в дугогасительной специальной камере.

Чем отличается схема магнитного реверсивного пускателя: правила комплектации

Представим, что появилась необходимость разобраться в особенностях устройства, в котором электрический двигатель способен работать в двух направления – прямом и обратном, то есть реверсивном. И если такая особенность очевидна, значит, в схеме агрегата предусмотрено наличиемагнитного реверсивного пускателя. Его использование не такое и простое, необходимо продумать режим работы, чтобы не допустить опасное замыкание фаз.

В схеме обязательно можно найти обозначение дополнительной цепи управления и кнопки запуска реверса. В виду такой продуманности, созданная схема отличается надежностью, так как защищена от короткого замыкания.

А за счет чего проходит реверс? Это легко объяснимо. – За счет переворачивания местами двух имеющихся в системе фаз: когда одна прекращает работу, а другая, наоборот, запускается. Для более надежной защиты, обязательно в схеме продумана блокировка, отвечающая за точную и своевременную остановку одного из пускателей, первого или второго. Все зависит от поставленных задач. Напомним, что в случае срабатывания двух пускателей мгновенно произойдет короткое замыкание на силовых контактах агрегата.

Отметим, что реверсивное движение запускается не мгновенно, так как требуется срабатывание нескольких важных пунктов. Во-первых, обязательно рекомендуется остановить работу двигателя, нажать кнопку «Стоп»

Во-вторых, надо обратить внимание на состояние катушки, снять с нее напряжение, иначе процесс реверсивного запуска даст сбой. Если все сделано правильно, то пускатель вернется в исходное положение под действием пружины

Все, агрегат готов к реверсу. Нажимаем кнопку «Пуск», соответственно, подается нужное напряжение на катушку, значит, процесс запущен. С панели управления устройства можно считать информацию замыкании электрической цепи. А это значит, что в систему поступил ток, и он постепенно подается в катушку. Одновременно выполняется блокирование всех не вступивших в работу контактов. Этого требует безопасность.

Отметим, что в случае срабатывания теплового реле, произойдет остановка агрегата во избежание аварийной ситуации.

Таким образом, магнитный пускатель играет важную роль в работе двигателей. Свое место назначения также достойно занимаем и реверсивный пускатель, обеспечивая бесперебойную работу станков, тэнов, лифтов и другого электрического оборудования. Пускатели относятся в надежным и безопасным образцам, особенно если они дополнительно оснащены блокировочными системными механизмами. Они находятся внутри кожуха и не допускают срабатывание одновременно двух катушек, не доводя до замыкания фаз.

{SOURCE}

Устройство и принцип действия электромотора

Электромотором принято называть устройство, в котором рабочая часть вращается под влиянием электромагнитного поля. Основными составляющими здесь являются неподвижный статор и движущийся вокруг своей оси ротор. В статорной части создаются импульсные электромагнитные волны, приводящие в движение роторную часть. Как правило, чем мощнее электропривод, тем больше габаритные размеры двигателя. Хотя современная техника стремится к миниатюризации, поэтому на рынке можно найти достаточно мощные модели вполне компактного размера.

Из множества разновидностей электрических силовых агрегатов чаще всего встречаются:

  • моторы коллекторные (короткозамкнутые), где ротор питается и приводится в действие от так называемых щеток, в свою очередь взаимодействующих с коллекторными ламелями;
  • двигатели асинхронные, работающие под воздействием индуктивных сил, возникающих в магнитном поле.

Для примера рассмотрим типовую асинхронную модель. Здесь питание подключается к обмоткам статора, в результате чего генерируются электромагнитные волны. При переменном напряжении возникает нестабильное поле, характеризующееся определенной частотой колебаний, смещающих ротор. Для беспрепятственного смещения между статорной и роторной частью специально оставляют небольшой промежуток. Установленные на статоре обмотки взаимодействуют с обмотками ротора, создавая электродвижущую силу. При этом образующиеся магнитные волны движутся в разных направлениях относительно статора, поэтому такой мотор называют асинхронным. Чаще всего для его подключения используются три фазы, но при необходимости большинство моделей можно приспособить к работе и от однофазной сети.

Изменение вращательного движения

Теперь для придания обратного направления движения, вам необходимо изменить положение силовых фаз, что удобно сделать при помощи переключателя КМ2.

Все происходит благодаря размыканию первой фазы. При этом все контакты возвращаются в исходно положение, обесточив обмотку двигателя. Данная фаза является ждущим режимом.

Задействование кнопки SB3 приводит в действие магнитный пускатель с аббревиатурой КМ2, который, в свою очередь, меняет положение второй и третьей фазы. Это действие заставляет двигатель вращаться в обратном направлении. Теперь КМ2 является ведущим и пока не произойдет его размыкание КМ1 будет не задействован.

Нужные компоненты

Своими силами организовать реверсивное подключение можно без особого труда, если под рукой имеется схема реверсивного пуска. Важным компонентом, значительно облегчающим процесс монтажа и запуска в работу электромотора, является контактор, который может быть в составе магнитного пускателя. Конечно, можно приспособить для включения/выключения агрегата простой рубильник или автоматический выключатель. Такой вариант допускается, но для нормальной работы электромотора нужны достаточно большие пусковые токи, которые могут быть опасны для обслуживающего персонала и оборудования.

Если во время включения случится пробой, то здоровью оператора может быть нанесен вред, а сам реверсивный электродвигатель и выключатель выйдут из строя. Поэтому для сведения риска поражения электрическим током к минимуму желательно использовать контактор, отделенный от той части, с которой непосредственно взаимодействует человек. В современных устройствах подобного типа имеется отдельный модульный блок с катушкой, образующей электромагнитное поле. Для работы такой катушки обычно достаточно 12-вольтового напряжения или же больше. При поступлении тока от источника питания на железный сердечник с прикрепленной контактной пластиной он втягивается внутрь и замыкает контактную группу, в результате чего электромотор запускается. Когда питающее напряжение пропадает, сердечник возвращается в исходное состояние и контакты размыкаются.

Технические характеристики

Не будем здесь рассматривать все параметры прибора, потому что выбор всегда делается по величине пускателя, которая характеризуется номинальным током нагрузки, действующей на контакты прибора. Существует семь величин пускателя, каждой из которых соответствует допустимая токовая нагрузка. На фотографии ниже обозначены эти самые величины, и в каких областях такие магнитные пускатели применяются.

Необходимо отметить, что небольшие погрешности в параметрах допустимы. Но в некоторых случаях надо учитывать, в каком диапазоне срабатывает тепловое реле. Если величины пускателей имеют завышенную нагрузку, а реле заниженный минимальный показатель теплового отключения, то может быть несоответствие заданной мощности электрической цепочки или потребителя.

{SOURCE}

Схемы подключения магнитного пускателя.

Первая, классическая схема, предназначена для обычного пуска электродвигателя: кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Причем вместо двигателя Вы можете подключать любую нагрузку, например, мощный ТЭН.

Для удобства понимания схема разделена на две части: силовая часть

и
цепи управления
.

Силовая часть

запитывается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В силовую часть входит: трехполюсный автоматический выключатель
QF1
, три пары силовых контактов магнитного пускателя
1L1-2T1
,
3L2-4T2
,
5L3-6T3
и трехфазный асинхронный эл. двигатель
М
.

Цепь управления

получает питание от фазы «А». В схему цепи управления входят кнопка
SB1
«Стоп», кнопка
SB2
«Пуск», катушка магнитного пускателя
КМ1
и его вспомогательный контакт
13НО-14НО
, включенный
параллельно
кнопке «Пуск».

При включении автомата QF1

фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя
1L1
,
3L2
,
5L3
и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на контакт
№3
кнопки «Пуск», вспомогательный контакт пускателя
13НО
и так же остается дежурить на этих двух контактах. Схема готова к работе.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1

, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах
2Т1
,
4Т2
,
6Т3
и уже от них поступает на эл. двигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО

, подключенного
параллельно
кнопке «Пуск», реализован
самоподхват
.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО

. На нижнем рисунке стрелкой показано движение фазы «А».

А если не будет самоподхвата, придется все время держать нажатой кнопку «Пуск» пока будет работать эл. двигатель или любая другая нагрузка, питающаяся от магнитного пускателя.

Чтобы отключить эл. двигатель достаточно нажать кнопку «Стоп»: цепь разорвется, управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель от трехфазного питающего напряжения.

А теперь рассмотрим монтажную

схему цепи управления пускателем. Здесь все практически так же, как и на принципиальной схеме, за небольшим исключением реализации самоподхвата.

Чтобы не тянуть лишний провод на кнопку «Пуск», ставится перемычка между выводом катушки и одним из ближних вспомогательных контактов: в данном случае это «А2

» и «
14НО
». А уже с противоположного вспомогательного контакта провод тянется непосредственно на контакт
№3
кнопки «Пуск».

Ну вот, мы с Вами и разобрали простую классическую схему подключения магнитного пускателя. Также на одном пускателе можно собрать схему автоматического ввода резерва (АВР), которая предназначена для обеспечения бесперебойного электроснабжения потребителей электроэнергией.

Ну а если остались вопросы или сомнения по работе пускателя, то посмотрите видеоролик, из которого Вы дополнительно подчерпнете нужную информацию.

Следующая схема будет немного сложнее этой, так как в ней будут задействованы два магнитных пускателя и три кнопки и называется эта схема реверсивной. При помощи такой схемы можно будет, например, вращать двигатель влево – вправо, поднимать и опускать лебедку.

А пока досвидания. Удачи!

Возможности пускателей

Для лимитирования пускового тока трёхфазного двигателя его обмотки могут связываться «звездой», затем, если мотор вышел на номинальные обороты, перейти в «треугольник». При этом магнитные пускатели могут быть: раскрытыми и в корпусе, реверсивными и нереверсивными, с защитой от перегрузок и без защиты от нагрузки.

Каждый электромагнитный пускатель имеет блокировочные и силовые контакты. Силовые коммутируют нагрузки. Блокировочные контакты нужны для управления работой контактов. Блокировочные и силовые контакты бывают естественно-незамкнутыми либо нормально-закрытыми. В принципиальных схемах контакты изображают в их нормальном состоянии.

Удобство использования реверсивных пускателей невозможно пересмотреть. Это и эксплуатационное управление трёхфазными асинхронными моторами разных станков и насосов, и управление системой вентиляции, арматурой, вплоть до замков и вентилей отопительной системы. Особенно примечательна вероятность удалённого управления пускателями, если электрический источник дистанционного управления коммутирует катушки пускателей аналогично реле, а последние безопасно связывают силовые цепи.

Подробнее о взаимоблокировке

Электрическая схема реверсивного пуска асинхронного двигателя требует наличия взаимоблокировки. Стоит понимать, что для смены направления вращения асинхронного двигателя нужно сменить любые 2 фазы местами. Для этого входы пускателей соединяются прямо, а выход соединяется накрест любые 2 фазы. В случае включения обоих пускателей одновременно произойдет короткое замыкание, которое, скорее всего, спалит силовые контактные группы на пускателях.

Вам будет интересно: Закон Бойля-Мариотта: формула и пример задачи

Для того чтобы избежать короткого замыкания при монтаже реверсивного пуска двигателя, нужно исключить одновременную работу обоих пускателей. Именно поэтому необходимо применять схему взаимоблокировки. При включенном первом пускателе разрывается питание на второй пускатель, чем и исключается его случайное включение, к примеру, одновременно нажаты обе кнопки «пуск».

Если так вышло, что при нажатии кнопки, которая должна включить «вращение вправо», а двигатель вращается влево, и, наоборот, при нажатии «вращение влево» двигатель вращается вправо, не стоит собирать заново всю схему. Просто поменяйте местами на вводе 2 провода – вот и все, проблема решена.

Может случиться так, что на вводе это сделать невозможно по каким-либо обстоятельствам. В таком случае смените местами 2 провода в клейменной коробке на двигателе. И снова проблема решена. Кнопка, отвечающая за вращение вправо, запустит вращение вправо, а кнопка, отвечающая за вращение влево, запустит вращение влево.

Описание работы вышеуказанной схемы

Вам будет интересно: Ликтор – это: суть профессии и исторические факты

Разберем работу принципиальной схемы реверсивного пуска двигателя. Ток поступает от фазы С на нормально замкнутую общую кнопку КнС, кнопка «стоп». После чего проходит через общее реле тока, которое защитит двигатель от перегрузок. Затем при нажатии КнП «право» ток проходит через нормально замкнутый контакт пускателя КМ2. Поступая на катушку пускателя КМ1, сердечник втягивается, замыкая силовые контакты, разрывая питание на пускатель КМ2.

Так необходимо делать для того, чтобы разорвать питание второго пускателя и защитить цепи от короткого замыкания. Ведь реверс обеспечен тем, что 2 любые фазы меняются местами. Таким образом, если при включенном КМ1 нажать кнопку КнП «лево», пуск не произойдет. Самошунтирование обеспечено вспомогательным контактом, изображенным под КнП «право». Когда пускатель включен, замкнут и этот контакт, обеспечивая питание на катушку пускателя.

Для того чтобы остановить двигатель, необходимо нажать КнС («стоп»), вследствие чего катушка пускателя потеряет питание и придет в нормальное состояние. Теперь, когда КМ1 пришел в нормальное состояние, он замкнул нормально замкнутую группу вспомогательных контактов, благодаря чему катушка пускателя КМ2 снова может получать питание, и стало возможно запустить вращение в противоположную сторону. Для этого нажмем КнП «лево», тем самым включая пускатель КМ2. Получая питание, катушка втягивает сердечник и замыкает силовые контакты, включая питание на двигатель, сменив 2 фазы местами.

Разбирая работу данной схемы реверсивного пуска двигателя, можно заметить что шунтирование обеспечено нормально разомкнутым вспомогательным контактом, изображенным под кнопкой КнП «лево», и оно разрывает питание на пускатель КМ1, делая невозможным его включение.

Выше была рассмотрена схема для трехфазного привода. В самом начале схемы сразу после КнС можно увидеть нормально замкнутый контакт от реле тока. В случае потребления двигателем чрезмерного тока, реле срабатывает, разрывая питание на всю цепь управления. Все, что работает в цепи управления, потеряет питание, это и спасет двигатель от выхода из строя.

Обычная нереверсивная схема включения

Простейшим вариантом включения считается нереверсивная схема, обеспечивающая вращение вала электродвигателя только в одну сторону. В качестве примера можно взять обычный пускатель с управляющей катушкой на 220 В.

Подключение схемы начинается в трехфазном автомате, подходит к силовым клеммам пускового устройства, и далее соединяется с тепловым реле. Управляющая катушка с одной из сторон соединяется с нулевым проводником, а с противоположной – с фазой путем использования в этой цепи функциональных кнопок.

В состав кнопочного поста входят две кнопки: ПУСК – с контактами нормально-разомкнутого типа и СТОП – с нормально-замкнутыми контактами. Одновременно с кнопкой запуска выполняется подключение нормально-замкнутого контакта управляющего катушечного элемента. За счет теплового реле, включенного в промежуток фазной линии, обеспечивается защита двигателя от чрезмерных перегрузок. Его нормально-замкнутый контакт оказывается соединенным с элементами управления.

Когда трехфазный автомат оказывается включенным, начинается течение тока в сторону силовых контактов пусковой аппаратуры и к управляющей цепи. После этого схема приходит в работоспособное состояние. С целью запуска электродвигателя вполне достаточно воздействия на пусковую кнопку. Далее, в управляющие компоненты подается питание. Цепь оказывается замкнутой, после чего якорь начинает втягиваться и в то же время замыкать контакт прибора управления. К силовой контактной группе двигателя подается ток, и вал начинает вращение. После возврата в исходное состояние пусковой кнопки, питание к обмотке контактора будет поступать, проходя по вспомогательному контакту, благодаря чему работа двигателя продолжится без перерыва.

Прекратить работу нереверсивного агрегата возможно имеющейся кнопкой СТОП. Это вызовет разрыв цепи, и питающее напряжение перестает подходить к блоку управления. Начинается размыкание шунтирующего контакта и возврат якоря в исходное состояние с одномоментным размыканием основных контактов. По окончании этого процесса, наступает остановка электродвигателя. Когда кнопка СТОП окажется отпущенной, контакт управляющего элемента будет пребывать в разомкнутом положении до следующего запуска схемы.

Чтобы защитить электродвигатель во время нереверсивного пуска, применяется тепловое реле на основе биметаллических контактных пластин. Под влиянием возрастающего тока они начинают выгибаться. Поскольку эпластины соединяются с расцепителем, контакт в управляющей обмотке прерывает поступление питающего напряжения. Контакты прибора разъединяются и переходят в первоначальное состояние.

Общая схема реверса электродвигателей

В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.

Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.

Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.

Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.

На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.

Машины постоянного тока

Реверсивный пуск двигателя постоянного тока можно осуществить изменением полярности подключения обмотки якоря или обмотки возбуждения. В зависимости от того, как эти две обмотки соединены между собой, двигатели постоянного тока имеют следующие типы возбуждения:

  • независимое — обмотки возбуждения и якоря запитывают от различных источников;
  • последовательное;
  • параллельное;
  • смешанное.

Двигатели постоянного тока могут уйти вразнос — режим работы машины, при котором обороты увеличиваются настолько, что это приводит к механическому повреждению.
В случае применения коллекторного двигателя с параллельным или независимым возбуждением такой режим может возникнуть при обрыве обмотки возбуждения. Поэтому схема подключения реверсивного двигателя в этом случае строится таким образом, чтобы осуществлялось переключение обмотки якоря, а обмотка возбуждения должна быть напрямую подключена к источнику питания. То есть недопустимо цепь возбуждения подключать через какие-либо контакты или предохранители.

В остальном схема управления отличается от реверсивного подключения трехфазного двигателя только тем, что происходит переключение двух питающих проводов постоянного тока, вместо трёх фаз переменного.

Принцип работы реверсивного магнитного пускателя

Подключение реверсивного магнитного пускателя и его работа происходит следующим образом. После осуществления команды «пуск» на панели управления устройства электрическая цепь замыкается, вследствие чего ток подаётся на катушку. В это время механическая блокирующая система срабатывает, подобным образом блокируются незадействованные контакты. Так как контакты кнопки тоже оказываются заблокированными, подобное действие позволяет не удерживать кнопку, а спокойно отпустить её. Вторая кнопка реверсивного магнитного пускателя, параллельно с запуском устройства, размыкает цепь, таким образом, её активация не даст никакого результата.

Для осуществления реверса необходимо активировать кнопку «стоп», нажатие которой обесточит обе катушки реверсивного магнитного пускателя, тем самым остановив функциональные операции оборудования. При таком действии все блокирующие устройства займут изначальное положение. Подобная последовательность позволяет активировать реверсивный магнитный пускатель вновь, без каких либо дополнительных действий. При выборе команды «пуск» произойдут вышеописанные действия, однако при этом будет использована вторая катушка, а первая окажется заблокированной.

Наиболее совершенный и безопасный реверсивный магнитный пускатель оснащен дополнительными блокировочными системными механизмами. Размещаются данные приспособления для блокирования рабочего момента, как правило, внутри кожуха (непосредственно под панелью управления) и предназначены для того чтобы не допустить срабатывания сразу обеих катушек. Согласно схеме реверсивного магнитного пускателя, если он снабжен электрической блокирующей системой, то использование механических блокировок вовсе необязательно.

Осуществление реверса происходит через полную остановку двигателя. Другими словами, при срабатывании реверсивного магнитного пускателя двигатель замедляется, после чего следует полная остановка, а затем осуществляется вращение в другую сторону. Однако при этом необходимо совпадение мощностей двигателя и реверсивного магнитного пускателя. Только при осуществлении данного процесса, реверс будет осуществлён правильно.

Если же остановка и реверс двигателя производится противовключением, то мощность оборудования должна быть значительно ниже максимально допустимой мощности реверсивного магнитного пускателя. Наиболее часто двигатель уступает по мощности пускателю в 1,5-2 раза. Во многом разница мощностей зависит от качества контактов магнитного пускателя, а точнее их износостойкости при работе в данных условиях.

Данный режим должен проходить без применения механических систем блокировки. Однако безопасность работы реверсивного магнитного пускателя в обязательном порядке должна обеспечиваться применением электрических систем блокировки. В целом же реверсивные магнитные пускатели являются технологичным и безопасным методом удалённого управления асинхронными электродвигателями.

Основные способы реверсирования двигателя

Как мы уже писали ранее, существует несколько вариантов осуществления реверса. Выше мы как раз подробно описали самый распространенный – с помощью реверсивного пускателя. Давайте же опишем и другие немаловажные методики, применяемые электриками. Они имеют как общие, так и отличительные черты, благодаря чему они разные, хотя и выполняют одну и ту же задачу.

Противовключение

Данный способ используется при наличии стремительных изменений очередности переключения ключей транзистора. Когда чередование фаз на работающем моторе меняется, вращения поля соответственно, меняются. Из-за этого имеет место скольжение, генерируемое быстро возрастающим током частотного преобразователя. Показатель доходит до своего максимального значения, ограниченного внутренним уровнем частотника. Когда скольжение сильное – задание скорости уменьшается при помощи внутреннего регулятора ПЧ и малый тормозной момент.

Когда же электродвигатель достигает нулевой скорости, тогда и происходит реверс, который полностью соответствует линиям разгона. Та энергия, которая не тратится на нагрузку и трение, поступает в ротор, где рассеивается.

Изменение направления

Здесь осуществляется изменение направленности вращений эл. поля при управлении периодом скорости замедления. Крутящий момент механизма, как известно, прямо противоположный моменту мотора и прерывает его по модулю. Если говорить простым языком, то естественное торможение происходит в несколько раз быстрее, чем указывает на то кривая замедления, установленная регулятором. Уровень скорости плавно снижается, в результате чего направленность оборотов меняется.

В ситуациях, когда крутящий момент демонстрирует естественную остановку меньше уровня, определенного регулятором, мотор работает в режиме «рекуперативного» торможения, когда энергия следует обратно на преобразователь.

Диодные мосты блокируют попадание энергии в сеть, а фильтровые конденсаторы заряжаются. Уровень напряжения постепенно растет, в результате чего запускается защитный прибор, который предотвращает выделение энергии.

Режим торможения

Также, моторы с тремя фазами легко достигают реверса, если мотор длительное время работает на торможение. В большинстве ситуаций этот метод применяется на испытательных стендах.


Режим торможения для реверса пример

Итак, при работе двигателя выделяется энергия, которая имеет высокие уровни, из-за чего резисторы просто не могут с справиться с ее рассеиванием. Чтобы предотвратить повышение температуры, существуют специальные системы, работающие на возврат энергии в сеть. Благодаря многоуровневому управлению четко и слаженно выполняются все функции, нацеленные на генерирование тока, максимально приближенного к частоте синуса.

Устройство магнитного пускателя для реверсного пуска

Стандартный пускатель состоит из следующих компонентов:

  • сердечник с закрепленной на нем катушкой индукции;
  • якорь с механизмом перемещения контактных групп;
  • корпус, обеспечивающий целостность конструкции вместе с защитой от внешних воздействий.

При подаче (отключении) тока питания движением якоря замыкаются (отсоединяются) соответствующие контакты силовых цепей. Реверсивные модификации создают из двух обычных пускателей, установленных на одной монтажной панели. Дополнительными проводниками обеспечивается блокировка, препятствующая одновременному включению двух изделий.


Реверсивный пускатель

В этом варианте используют отдельные клавиши, которые инициируют вращение ротора в прямом и обратном направлении. Первый рабочий режим сопровождается шунтированием контактной группой «КМ1» соответствующей цепи. Если нажать после этого клавишу «Назад», ничего не произойдет.

Для активизации обратного вращения следует сначала остановить двигатель, чтобы исключить поломку. Нажатием «Стоп» (С – на рисунке ниже) отключают питающее напряжение 380 V. После можно подать ток в нужные обмотки через силовые контактные группы «КМ2».


Схема подключения

Защита силовых цепей от короткого замыкания или «защита от дурака».

Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок. И вот представьте ситуацию, когда нет защиты.

Двигатель вращается в левую сторону, пускатель КМ1

в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель
КМ1
мы включаем пускатель
КМ2
. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя
КМ1
. Произойдет
межфазное замыкание
между фазами «В» и «С».


А чтобы этого не случилось, в схеме используют нормально-замкнутые

контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.

Защита работы реверсного включения электродвигателя

Всегда, перед тем как изменить порядок подключения 3-фазного двигателя, изменяя порядок фаз на обмотках электродвигателя, надо его остановить. Это реализуют в схеме включения нормально замкнутые контакты, которые «подстраховывают» работу оператора и не допускают межфазного замыкания в электрическом двигателе, когда происходит реверсирование его подсоединения. В рассмотренной схеме подключения реверсного пускателя видно, что работать может только один пускатель.

Ежедневно происходит работа по подключению электродвигателей прямого и обратного вращения, схема включения пускателей не составляет сложностей для квалифицированных электриков. Необходимо всегда помнить, что должна реализовываться функция остановки двигателя перед его обратным вращением.

Как подключить реверсивный магнитный пускатель: схема, описание

В каждой установке, в которой требуется запуск электродвигателя в прямом и обратном направлении обязательно присутствует магнитный пускатель реверсивной схемы. Подключение такого компонента не является столь сложной задачей как, кажется, на первый взгляд. К тому же востребованность таких задач появляется довольно часто. К примеру, в сверлильных станках, отрезных установках или же лифтах, если это касается не бытового использования.

Принципиальным отличием такой схемы от одинарной является наличие дополнительной цепи управления и немного измененной силовой части. Также для осуществления переключения такая установка оснащена кнопкой (SB3 на рисунке). Такая система, как правило, защищена от короткого замыкания. Для этого перед катушками в силовой цепи предусмотрено наличие двух нормально — замкнутых контакта (КМ1.2 и КМ2.2) производные от контактных приставок, размещенных в позиции магнитных пускателей (КМ1 и КМ2).

Для того чтобы приведенная схема была читабельной, изображения цепи на ней и силовые контакты имеют различное цветовое оформление. Также для упрощения, здесь не были указаны пары силовых контактов, обычно имеющие цифробуквенные аббревиатуры. Впрочем, с данными вопросами можно ознакомиться в статьях, посвященных подключению стандартных магнитных пусковых систем.

Работа цепей управления при вращении двигателя влево.

При нажатии на кнопку SB2

фаза «А» через нормально-замкнутый контакт
КМ2.2
поступает на катушку магнитного пускателя
КМ1
, пускатель срабатывает и его нормально-разомкнутые контакты
замыкаются
, а нормально-замкнутые
размыкаются
.

При замыкании контакта КМ1.1

пускатель встает на
самоподхват
, а при замыкании силовых контактов
КМ1
фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.

Здесь же, нормально-замкнутый контакт КМ1.2

, расположенный в цепи питания катушки пускателя
КМ2
, размыкается и не дает включиться магнитному пускателю
КМ2
пока в работе пускатель
КМ1
. Это так называемая «защита от дурака», и о ней чуть ниже.

На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.

Вид и функционирование реверсивной схемы на 380 В

Здесь мы имеем, фактически, все те же элементы, что используются для ПМЛ на 220 В, но катушки пускателей рассчитаны на более высокое напряжение (имеют больше витков). Кроме того, отличием от предыдущей схемы является подключение блока управления не через одну, а через две фазы, не используя общий ноль.

Вид реверсивной схемы на 380 В

РАЗНОВИДНОСТИ УСТРОЙСТВ

Модели магнитных пускателей классифицируются по следующим параметрам:

  • рабочий ток, коммутируемый основными контактами;
  • рабочее напряжение нагрузки;
  • напряжение и род тока катушки управления;
  • категория применения.

Номинальные токи аппаратов составляют стандартизованный ряд значений от 6,3 А до 250 А. Этот ряд соответствует устаревшей классификации этих коммутационных приборов по величине, согласно которой все МП подразделялись на величины от нулевой (0) до седьмой (7).

Каждому значению величины МП соответствовал определённый номинальный ток. Например, нулевой величине соответствует значение 6,3 ампера, первой – 10 ампер и так далее.

С появлением большого числа зарубежных МП, распространённость классификации по величинам стала угасать. Действительно, логику введения дополнительного понятия величины МП понять трудно. Типичная «бритва Оккама». При выборе аппарата в первую очередь нас интересует его номинальный ток, о нём и следует говорить.

МП относятся к низковольтным устройствам, рассчитанным на подключение в сетях напряжением до 1000 вольт.

В этом сегменте имеется два стандартных напряжения – 380 В и 660 В. На какое напряжение рассчитана конкретная модель указывается в техническом паспорте устройства, а также написано на корпусе.

Гораздо более разнообразен ряд напряжений, на подключение к которым рассчитана катушка управления. Это объясняется тем, что МП работают в различных системах управления и автоматики.

В этом случае подключение напряжения к катушке управления производится не просто от одной или двух фаз питающей электросети. В системах автоматики сформированы специальные цепи оперативного тока, которые бывают различными по уровню напряжения и роду тока.

Катушки управления коммутационных аппаратов могут быть рассчитаны на подключение к переменному напряжению в диапазоне от 12 до 660 вольт или к постоянному от 12 до 440 вольт.

В соответствии с ГОСТ МП делятся на 12 категорий (от AC–1 до AC–8b), в зависимости от характера нагрузки переменного тока, подключение которой они производят. Наибольшее распространение имеют категории AC-3 и AC-4, предназначенные для подключения двигателей с короткозамкнутым ротором.

МП могут различаться также комплектацией, внешним оформлением. К распространённым вариантам относятся модели, размещённые в корпусе, снаружи которого расположены кнопки «Пуск» и «Стоп». В комплект поставки магнитного пускателя может входить тепловое реле защиты.

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Порядок включения реверсивного электромотора

Руководствуясь все той же схемой подключения мотора с реверсом, несложно понять, каким образом включается силовой агрегат. Сначала задействуется общий выключатель, подающий ток по всем фазам. Но напряжение сразу не поступает на рабочие части электромотора, а занимает выжидательное положение, пока не будет дана команда, в какую сторону вращать ротор. Провода подсоединяются к защитному автомату, размыкающему электроцепь в случае короткого замыкания, и далее идут на кнопку быстрого включения/отключения электроустановки. Дальнейшие инструкции о режиме работы электромотор получает через две кнопки модульных блоков, обеспечивающих вращение вправо или влево. Только после нажатия одной из пусковых кнопок питание поступает на обмотку электромотора. Схема организована так, чтобы исключить возможность одновременного подсоединения этих двух контактов.

Чтобы обеспечить электромотору возможность обратного вращения, нужно переключить фазы. Для этого собственно и используется магнитный пускатель. В приведенной схеме один пусковой блок подсоединяет фазы к двигателю напрямую, а второй выполняет данное действие уже со смещением. Одна из фаз в такой цепи находится в ждущем положении – ее размыкание обесточивает весь силовой агрегат. Кроме того, правильно подключенный реверс электродвигателя обычно предусматривает наличие дополнительного модуля защиты, который контролирует процесс начала нового цикла, а именно предварительную остановку электромотора. Клавиша активации второго пускателя, меняющего положение фаз, срабатывает только при условии полной остановки работы электроустановки. При этом дежурная фаза никуда не девается и продолжает поступать на первый контакт электромотора. Меняются местами только вторая и третья фазы, обеспечивая реверсивную работу силового агрегата. Порядок запуска реверсивного хода мотора может отличаться в зависимости от параметров источника питания – однофазного на 220B или трехфазного на 380B.

Этапы подключения к сети с тремя фазами

С помощью приведенной выше схемы несложно понять, в какой последовательности должно происходить подключение электромотора в трехфазной электросети. Сначала монтируется основной силовой выключатель, рассчитанный на потребляемое напряжение и токовые характеристики конкретного силового агрегата, который планируется запустить в работу. Данному этапу стоит уделить особое внимание, поскольку от него напрямую зависит бесперебойная работа электроустановки. При неправильном подборе автомата он будет постоянно срабатывать, размыкая цепь в самый ответственный момент, или же не сработает в аварийной ситуации, что приведет к порче оборудования и создаст опасную для здоровья обслуживающего персонала обстановку.

Следующий этап – монтаж предохранительного автомата. Перед установкой основного силового и защитного автоматического выключателя обязательно следует обесточить электрическую цепь. Далее провода отводятся на стоповую кнопку, позволяющую в случае необходимости одним движением остановить работу силового агрегата, а уже затем напряжение подается на контакторы. Для облегчения процесса подключения на кнопочных блоках и ячейках контактора обычно делаются соответствующие условные обозначения.

Этапы подключения к однофазной электросети

Нередко возникает необходимость запустить асинхронный электромотор в обычных бытовых условиях, где наличие трехфазной электросети не предусмотрено. В такой ситуации нужно знать, как подсоединить силовой агрегат к сети на 220B. Чтобы ротор начал вращательное движение, здесь потребуется дополнительное импульсное воздействие, для чего в электрическую цепь, как правило, включается конденсатор нужной емкости.

При использовании конденсатора скорость оборотов не меняется, а мощность заметно снижается. Потери мощности могут быть разными вплоть до пятидесяти процентов в зависимости от конденсаторной емкости и конкретных условий эксплуатации электродвигателя. Кроме того, не все модели силовых агрегатов могут работать в однофазной электросети. Обычно такая возможность прописана в технической документации к изделию и указана на прикрепленной к корпусу бирке.

Из большого количества предлагаемых сейчас в интернете вариантов подключения электромотора к сети 220B стандартными считаются две методики – «звезда» и «треугольник». Рекомендуется сначала ознакомиться с документацией на конкретно взятый электрический двигатель и рассмотреть заводскую табличку с параметрами на его корпусе, чтобы выяснить, на какое напряжение рассчитаны обмотки и как их можно подсоединять.

В схеме «треугольник» один контакт подключается через конденсатор к обмотке, а два других выводятся для подсоединения к источнику питания. В таком случае без нагрузки вал электромотора будет свободно вращаться с нужной скоростью, но если его сильно нагрузить, то вращение существенно замедлится или прекратится полностью. Решить данную проблему можно, если дополнительно подключить еще один конденсатор для выполнения только одной задачи – запуска электромотора, после чего он разряжается и спустя пару секунд отключается.

Чтобы пусковой конденсатор для электромотора включился в цепь, обычно используется отдельная кнопка кратковременного запуска. После раскрутки ротора она размыкает контакты, а вал продолжает вращаться по инерции при поддержке магнитного поля обмотки. В качестве такого переключателя можно задействовать реле или готовую кнопку с контактной группой на пружине, которая при отпускании подымает контакты и отключается от цепи. Чтобы избежать короткого замыкания между витками, рекомендуется использовать тепловое реле, отключающее дополнительную обмотку в случае критического повышения температуры.

Также здесь можно задействовать центробежный выключатель, размыкающий цепь при превышении допустимого значения оборотов. Контактная пластина под действием центробежных сил оттягивается и при достижении заданной скорости оборотов обесточивает силовую установку или передает сигнал на альтернативный механизм управления. Вариантов реализации регулировки скорости вращения и автоматической защиты от перенапряжения есть несколько. Выключатель может стоять как непосредственно на роторном валу, так и на других частях конструкции, подключаться напрямую или через редуктор. Бывают случаи, когда в одной схеме задействован и центробежный выключатель, и тепловое реле.

Для работы электродвигателя, подключенного по методике «звезда», через одну его обмотку пропускается единичная фаза 220 вольт, а через две других – линейное напряжение 380 вольт. Рабочий конденсатор подключается к выходным концам обмоток, два из которых выводятся для подсоединения к однофазной электросети, а свободный конец замыкает на конденсатор через сетевую фазу. Стоит отметить, что подключение «треугольником» делается проще и потери мощности будут меньше, чем в схеме «звезда». Поэтому по возможности следует применять именно «треугольник», но если модель вашего электромотора такой способ подключения не поддерживает, то остается только вариант со «звездой».

В нашем случае нужно не только запустить электромотор, но также обеспечить возможность реверсивного движения. Для этого поступающее от конденсатора питание должно переключаться между полюсами. Реализовать это можно с помощью двух переключателей и одной кнопки без фиксации положения. С помощью одного выключателя будет подаваться напряжение на цепь питания электромотора, а второй переключатель должен иметь трехпозиционную конструкцию. В одной позиции силовой агрегат отключается, а во второй и третьей меняет полярность подключения обмоток так, чтобы ротор мотора крутился в разные стороны. Не фиксируемая кнопка предназначена для подключения второго конденсатора-пускателя.

Порядок действий следующий. Два исходящих провода от обоих конденсаторов скручиваются между собой, а к двум другим подключается кнопка запуска. Средний выход от трехпозиционного переключателя соединяется со скрученными конденсаторными выходами, а два других отводятся к клеммам электромотора с целью подачи на него питания. Конденсаторы также подсоединяются к обмоточным пусковым выходам, а кнопка включения монтируется в разрыв фазного проводника. Для запуска всей этой конструкции в работу сначала подается напряжение на основной переключатель и с помощью трехпозиционного элемента управления указывается нужное направление движения силового агрегата. Затем зажимается не фиксируемая пусковая кнопка и отпускается после разгона ротора до рабочей скорости вращения. Чтобы запустить электромотор в другую сторону, его нужно отключить от источника питания и дождаться полной остановки вала. Только потом переключить тумблер в позицию реверсивного хода.

Особенности реверсивных пускателей

Используются такие схемы подключения в конструкциях лифтов, подъемных кранов, сверлильных станков. Если сильно не вдаваться в детали, то может показаться, что схема включения мотора с использованием реверса сложнее. Но на деле оказывается, что сложного нет ничего – в конструкцию добавилась еще одна силовая часть и управление.

Стоимость таких устройств немного выше за счет использования большего количества элементов. По сути, это два электромагнитных пускателя, объединенных в один корпус. Принцип работы у схемы специфический, потребуется внимательно рассмотреть все нюансы.

Техника безопасности

При монтаже, наладке и ремонте необходимо строго соблюдать правила техники безопасности.

В случае работы со схемой управления электродвигателями для полного отключения нужно обесточить силовую часть и цепи управления. Некоторые электродвигатели могут получать питание от двух независимых источников питания, поэтому необходимо обязательно изучить схему подключения. Произведите необходимые отключения и проверьте индикатором отсутствие напряжения не только на силовых, но и на вспомогательных контактах.

Если в схеме установлены конденсаторы, после отключения питания следует дать им время для разрядки, прежде чем касаться токопроводящих частей.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]