Электроматериаловедение — Проводниковая медь и сплавы

На воздухе медные провода окисляются медленно, покрываясь тонким слоем окиси CuO, препятствующим дальнейшему окислению меди. Коррозию меди вызывают сернистый газ SO2, сероводород H2S, аммиак NH3, окись азота NO, пары азотной кислоты и некоторые другие реактивы.

Проводниковую медь получают из слитков путем гальванической очистки ее в электролитических ваннах. Примеси даже в ничтожных количествах, резко снижают электропроводность меди, делая ее малопригодной для проводников тока, поэтому в качестве электротехнической меди применяют лишь две ее марки М0 и М1.

Почти все изделия из проводниковой меди изготавливаются путем проката, прессования и волочения. Так, волочением могут быть изготовлены провода диаметром до 0,005 мм, ленты толщиной до 0,1 мм и медная фольга толщиной до 0,008 мм.

Проводниковая медь применяется как в отожженном после холодной обработки виде (мягкая медь марки ММ), так и без отжига (твердая медь марки МТ).

При температурах термообработки выше 900 °C вследствие интенсивного роста зерна механические свойства меди резко ухудшаются.

В целях повышения предела ползучести и термической устойчивости медь легируют серебром в пределах 0,07—0,15%, а также магнием, кадмием, цирконием и другими элементами.

Медь с присадкой серебра применяется для обмоток быстроходных и нагревостойких машин большой мощности, а медь, легированная различными элементами, используется в коллекторах и контактных кольцах сильно нагруженных машин.

Зависимость от температуры

Удельное электрическое сопротивление зависит от температуры. Но все группы веществ проявляют себя по-разному при ее изменении. Это необходимо учитывать при расчете проводов, которые будут работать в определенных условиях. К примеру, на улице, где значения температуры зависят от времени года, необходимые материалы с меньшей подверженностью изменениям в диапазоне от -30 до +30 градусов Цельсия. Если же планируется применение в технике, которая будет работать в одних и тех же условиях, то здесь также нужно оптимизировать проводку под конкретные параметры. Материал всегда подбирается с учетом эксплуатации.

В номинальной таблице удельное электрическое сопротивление берется при температуре 0 градусов Цельсия. Повышение показателей данного параметра при нагреве материала обусловлено тем, что интенсивность передвижения атомов в веществе начинает возрастать. Носители электрических зарядов хаотично рассеиваются во всех направлениях, что приводит к созданию препятствий при передвижении частиц. Величина электрического потока снижается.

При уменьшении температуры условия прохождения тока становятся лучше. При достижении определенной температуры, которая для каждого металла будет отличаться, появляется сверхпроводимость, при которой рассматриваемая характеристика почти достигает нуля.

Отличия в параметрах порой достигают очень больших значений. Те материалы, которые обладают высокими показателями, могут использовать в качестве изоляторов. Они помогают защищать проводку от замыкания и ненамеренного контакта с человеком. Некоторые вещества вообще не применимы для электротехники, если у них высокое значение этого параметра. Этому могут мешать другие свойства. Например, удельная электрическая проводимость воды не будет иметь большого значения для данный сферы. Здесь приведены значения некоторых веществ с высокими показателями.

Материалы с высоким удельным сопротивлениемρ (Ом·м)
Бакелит1016
Бензол1015…1016
Бумага1015
Вода дистиллированная104
Вода морская0.3
Дерево сухое1012
Земля влажная102
Кварцевое стекло1016
Керосин1011
Мрамор108
Парафин1015
Парафиновое масло1014
Плексиглас1013
Полистирол1016
Полихлорвинил1013
Полиэтилен1012
Силиконовое масло1013
Слюда1014
Стекло1011
Трансформаторное масло1010
Фарфор1014
Шифер1014
Эбонит1016
Янтарь1018

Более активно в электротехнике применяются вещества с низкими показателями. Зачастую это металлы, которые служат проводниками. В них также наблюдается много различий. Чтобы узнать удельное электрическое сопротивление меди или других материалов, стоит посмотреть в справочную таблицу.

Материалы с низким удельным сопротивлениемρ (Ом·м)
Алюминий2.7·10-8
Вольфрам5.5·10-8
Графит8.0·10-6
Железо1.0·10-7
Золото2.2·10-8
Иридий4.74·10-8
Константан5.0·10-7
Литая сталь1.3·10-7
Магний4.4·10-8
Манганин4.3·10-7
Медь1.72·10-8
Молибден5.4·10-8
Нейзильбер3.3·10-7
Никель8.7·10-8
Нихром1.12·10-6
Олово1.2·10-7
Платина1.07·10-7
Ртуть9.6·10-7
Свинец2.08·10-7
Серебро1.6·10-8
Серый чугун1.0·10-6
Угольные щетки4.0·10-5
Цинк5.9·10-8
Никелин0,4·10-6

Историческая справка

Согласно историческим сведениям, первыми металлами, которые использовал человек, были медь и золото. Оба металла являются очень мягкими в чистом состоянии, поэтому их использование в жизнедеятельности человека является достаточно ограниченным. В частности, медь использовалась древними людьми с момента начала использования ими огня, а со времен Римской империи этот металл стал более интенсивно применяться в изготовлении труб, военного оружия, украшений для статуй и для других целей.

Для улучшения характеристик чистых металлов, например, большей твердости и прочности, со временем человеку пришла мысль смешивать их. Так, приблизительно в 3500 году до нашей эры в Месопотамии получили бронзу — сплав меди с оловом, который обладал высокой сопротивляемостью к коррозии и был более прочной, чем каждый чистый металл по отдельности. Благодаря этим свойствам бронзу стали использовать для производства оружия и орудий труда.

Около 1400 года до нашей эры была открыта латунь — сплав цинка и меди, который демонстрировал великолепную устойчивость против деформации, обладал высокой пластичностью при низких и высоких температурах и имел высокую устойчивость к коррозии и механическому износу. Однако ее использование приобрело массовый характер только в 250 году до нашей эры с началом производства монет в Римской империи.

С этого времени применение латуни стало осуществляться в самых различных областях человеческой деятельности начиная от вооружения и заканчивая ювелирными украшениями. В XV веке она стала использоваться для производства астрономических инструментов, а с появлением печати сплав стал активно применяться в типографии. С середины XVI века в Европе болты и гайки изготавливались главным образом из латуни, меди и бронзы. Этот сплав использовали для изготовления шестерен часовых механизмов, а в XVII веке в Голландии латунь использовали для изготовления оптического телескопа.

Что такое электрическое сопротивление?

Ему можно дать определение исходя из двух позиций. Первая связана с формулой для закона Ома. И звучит оно так: электрическое сопротивление — это физическая величина, которая определяется как отношение напряжения в проводнике к силе тока, протекающего в нем. Математическая запись приведена немного ниже.

Вторая основывается на свойствах тела. Электрическое сопротивление проводника — это физическая величина, которая указывает на свойство тела преобразовывать энергию электричества в тепло. Оба этих утверждения верны. Только в школьном курсе чаще всего останавливаются на запоминании первого. Обозначается изучаемая величина буквой R. Единицы, в которых измеряется электрическое сопротивление, — Ом.

Связь с удельной проводимостью

В изотропных материалах связь между удельным сопротивлением ρ{\displaystyle \rho } и удельной проводимостью σ{\displaystyle \sigma } выражается равенством

ρ=1σ.{\displaystyle \rho ={\frac {1}{\sigma }}.}

В случае анизотропных материалов связь между компонентами тензора удельного сопротивления ρij{\displaystyle \rho _{ij}} и тензора удельной проводимости σij{\displaystyle \sigma _{ij}} имеет более сложный характер. Действительно, закон Ома в дифференциальной форме для анизотропных материалов имеет вид:

Ji(r→)=∑j=13σij(r→)Ej(r→).{\displaystyle J_{i}({\vec {r}})=\sum _{j=1}^{3}\sigma _{ij}({\vec {r}})E_{j}({\vec {r}}).}

Из этого равенства и приведённого ранее соотношения для Ei(r→){\displaystyle E_{i}({\vec {r}})} следует, что тензор удельного сопротивления является обратным тензору удельной проводимости. С учётом этого для компонент тензора удельного сопротивления выполняется:

ρ11=1det(σ)σ22σ33−σ23σ32,{\displaystyle \rho _{11}={\frac {1}{\det(\sigma )}},} ρ12=1det(σ)σ33σ12−σ13σ32,{\displaystyle \rho _{12}={\frac {1}{\det(\sigma )}},}

где det(σ){\displaystyle \det(\sigma )} — определитель матрицы, составленной из компонент тензора σij{\displaystyle \sigma _{ij}}. Остальные компоненты тензора удельного сопротивления получаются из приведённых уравнений в результате циклической перестановки индексов 1

,
2
и
3
.

Таблица удельного электрического сопротивления некоторых металлов

Вид проводаρ при 20℃, Ом-м
Серебряный1,59×10⁻⁸
Медный1,67×10⁻⁸
Золотой2,35×10⁻⁸
Алюминиевый2,65×10⁻⁸
Вольфрамовый5,65×10⁻⁸
Никелевый6,84×10⁻⁸
Железный9,7×10⁻⁸
Платиновый1,06×10⁻⁷
Стальной1,6×10⁻⁷
Свинцовый2,06×10⁻⁷
Дюралюминиевый4,0×10⁻⁷
Нихромовый1,05×10⁻⁶

Удельное сопротивление абсолютно независимо от формы и размеров проводника, однако варьируется в широком диапазоне при отклонении температуры от принятого за стандартное значения, равного 20 градусам Цельсия. Практическим электротехническим путем доказано, что увеличение температуры повышает сопротивляемость металлов течению тока, с обратной стороны — вместе со снижением температуры она снижается. Примерно подсчитать, насколько существенным будет изменение, можно с учетом того, что всем металлам присущ почти одинаковый уровень прироста убыли данной величины, в среднем составляющий 0,4% на 1°С.


График сопротивления

Если же данный показатель нужно определить точно, то можно воспользоваться этой формулой:

ρ = ρ0 x (1 + α x (t — t))

, где ρ и ρ0 — соответственно удельные сопротивления при температурах t и t (20°С, табличное значение), α — температурный коэффициент сопротивления.

Вид проводаα
Никелевый0,005866
Железный0,005671
Молибденовый0,004579
Вольфрамовый0,004403
Алюминиевый0,004308
Медный0,004041
Серебряный0,003819
Платиновый0,003729
Золотой0,003715
Цинковый0,003847
Стальной0,003
Нихромовый0,00017

Так, к примеру, найдя в таблицах удельное сопротивление меди при 20 градусах Цельсия и ее температурный коэффициент, можно вычислить, что при нагреве до 100℃ ее сопротивление вырастет на 32%. Практически то же самое будет происходить с удельным сопротивлением алюминиевого кабеля с тем же коэффициентом (0,004). А вот удельное сопротивление стали повысится менее значительно — на 24%.


Нагрев

С увеличением температуры проводник насыщается тепловой энергией, передающейся всем атомам вещества. Этим обуславливается повышение интенсивности их теплового движения. Последний фактор и приводит к повышению сопротивляемости движению свободных электронов в определенном направлении, поскольку возрастает вероятность встречи свободных электронов с атомами. Когда температура снижается, меньшее количество атомов может препятствовать направленному движению электронов, следовательно, происходит обратное. В результате колоссального спада температуры возникает интереснейшее явление, называемое «сверхпроводимостью металлов»: сопротивляемость уменьшается до нуля в условиях, близких к абсолютному нулю (-273,15℃). В таких кондициях атомы металла замирают на своих позициях, и электроны движутся без каких-либо препятствий.


Сверхпроводимость

Как отличить?

Чаще всего можно отличить по:

  • виду;
  • весу;
  • степени твердости

без применения каких-либо инструментов или аппаратуры.

Но бывают ситуации, когда для точности необходимо задействовать:

  • реактивы,
  • инструменты,
  • приборы.

Перед оценкой лома, который вы собираетесь отнести в пункт приема, надо очистить его от грязи, иначе «на глаз» определить точно не получится.

По цвету


Оба металла, хоть и в разной степени, могут покрыться патиной.
Поэтому не забываем хорошо очистить лом.

Если объект долго находился на открытом воздухе или в воде, слой патины снимается сложно.

Иной раз оправданной будет покупка специального средства для очистки.

Желательно осматривать лом под мощным белым светом.

Подразумевается, что можно смотреть либо под солнцем в погожий день, либо под яркой люминесцентной лампой. Лампа накаливания не подходит.

Чистая медь будет иметь красновато-коричневый оттенок, иногда с розовым отливом.Надо учитывать, что латунь может быть красной или оранжевой. Такую обычно используют для украшений и водопроводных труб.

Если материал с оранжевым, желтым или золотистым оттенком, можно быть почти уверенным, что перед вами латунь.

Если вы занимаетесь сбором и сдачей металлолома то вам будет полезно знать цены на лом черных металлов. Если вы не знаете, где найти черные металлы, то прочитайте данную статью. Сомневаетесь, какую модель металлоискателя выбрать? Ознакомьтесь с обзором популярных моделей .

Она еще бывает светло-золотистой, бледно-желтой , и даже грязно-белой, но поисковикам металла встречается очень редко, так как такой сплав тяжело обрабатывать, и он используется преимущественно в украшениях.

Лучшая рекомендация – носить с собой предмет, в котором вы точно уверены, что он сделан из чистой меди. Вы сможете сравнивать ее с найденным вами ломом. Чаще всего такой метод хорошо работает.

По звуку

Еще один метод, для которого не нужны специальные навыки или приспособления. Различать металлы по звуку можно научиться после непродолжительной тренировки. Ударьте чем-то металлическим по предмету. Если он сделан из меди, то звук будет приглушенным, низким. Это происходит, так как металл мягкий.

Обычно визуального осмотра и проверки на звук и твердость достаточно для определения в полевых условиях.

Напротив, латунь будет издавать при ударе звонкий и высокий звук. Второй по значимости способ проверки для тех, кто имеет дело с металлоломом, после визуальной оценки на свету. Но, такой метод оправдан только с большими и объемными предметами – нужно, чтобы было чему издавать звук.

По твердости

Медь, как уже было сказано выше, — мягкий металл. Латунь специально создали, чтобы увеличить твердость меди при сохранении некоторых ее других характеристик. Поэтому при нанесении повреждения лому, медью будет тот материал, который легче деформируется. Латунь же стойко переносит удары.

По маркировке


Если на предмете есть метки, определение металла или сплава может стать простым и точным.
На латунь, как правило, ставят метку, которая начинается со значка «Л».

Соответственно, маркировка меди начинается с «М». Правда, медь довольно часто не имеет никакой маркировки.

Вот некоторые расшифровки, которые могут пригодиться:

  1. Маркировка меди начинается с одной буквы «М», за которой идут цифры. Буква «Л» на изделиях из латуни бывает не одна, за ней могут идти еще буквы, а только потом цифры.
  2. В Соединенных Штатах и Канаде действует система UNS, согласно которой на латуни ставится метка C2, C3, C4.
  3. В Европейском Союзе оба металла маркируются буквой С, все зависит от последующих букв. Для меди они будут A, B, C, D, а для латунного сплава – L, M, N, P и R.
  4. Еще не так давно распространенной была маркировка, состоящая из значков химических элементов. Например, Cu Zn (купрум – цинк) будет означать латунь.

По весу

Латунь легче меди благодаря добавлению в нее цинка. Но для того, чтобы определить по бесформенному куску, металл это или сплав, необходим опыт.

По стружке


Для этой проверки потребуется дрель по металлу или доступ к станку, чтобы получить стружку.
У латуни она будет, как говорят специалисты, игольчатая, так как материал твердый.

Она как бы сыпучая.

У меди стружка будет пластичнее, поэтому часто даже не разрывается и получается витиеватая, одной сплошной спиралью.

Однако существуют сорта латуни, стружки которых похожи на медные. По отзывам практиков сорт ЛС63 — очень пластичный и вязкий сплав, после его обработки остаются стружки-спиральки.

Анализ кислотой

Если вы столкнулись с латунью марки Л-96, что означает присутствие в сплаве 96% меди, отличить ее от металла без анализа сложно. Для этого можно использовать соляную кислоту. Если капнуть ею на чистую медь, она просто очистит ее от патины и в реакцию с самим металлом не вступит.

Если же нанести соляную кислоту на латунь, то в реакцию вступит цинк и на поверхности проступит окись белого цвета – хлорид цинка.

Анализатором

На нашем портале есть подробный материал про анализаторы металлов и сплавов. При помощи такого устройства можно безошибочно определить, что находится перед вами.

Такие анализаторы имеют жидкокристаллический экран, на который, после взаимодействия аппарата и металлического объекта, выводится полный список всех составляющих элементов.

Если это будет 99% меди и десятые доли процента каких-то случайных примесей – это медь. Если будут в значительных количествах другие металлы – латунь. Но способ дорогой.

По типу изделия


Некоторые изделия производят только из меди или только из латуни.
Это может стать дополнительным ориентиром.

Инструменты производят исключительно из латуни, она тверже.

Из меди делают некоторые части духовых музыкальных инструментов.

В принципе, нужно отталкиваться от назначения предмета – если он должен быть:

  • надежным,
  • твердым,
  • негнущимся,

то для его изготовления, скорее всего, использовали латунь.

Если наоборот, нужна пластичность, высокая электро- или теплопроводность, то это – медь.

Путем нагревания

Еще один способ, при котором нужно использовать газовую горелку.

Индикатором здесь будет оксид цинка, который образуется в виде налета бледно-белого пепельного оттенка только на латуни, если ту нагреть до температуры выше 600 градусов.

Понятие электрического сопротивления проводника

Классическое определение объясняет электрический ток движением «свободных» (валентных) электронов. Его обеспечивает созданное источником электрическое поле. Перемещение в металле затрудняют не только нормальные компоненты кристаллической решетки, но и дефектные участки, примеси, неоднородные области. В ходе столкновений с препятствиями за счет перехода импульса в тепловую энергию происходит повышение температуры.


Наглядный пример – нагрев воды кипятильником

В газах, электролитах и других материалах несколько отличная физика явления. Линейные зависимости наблюдаются в металлах и других проводниках. Базовые соотношения выражены известной формулой закона Ома:

R (электрическое сопротивление) = U (напряжение)/ I (сила тока).

Для удобства часто используют обратную величину, проводимость (G = 1/R). Она обозначает способность определенного материала пропускать ток с определенными потерями.

Для упрощения иногда применяют пример с водопроводом. Движущаяся жидкость – аналог тока. Давление – эквивалент напряжения. Уменьшением (увеличением) поперечного сечения или положением запорного устройства определяют условия перемещения. Подобным образом изменяют основные параметры электрических цепей с помощью сопротивления (R).

К сведению. Количество жидкости, проходящее за единицу времени через контрольное сечение трубы, – эквивалент электрической мощности.

От чего и как зависит сопротивление?

Во-первых, от вещества, из которого изготовлен проводник. Чем больше значение, которое имеет удельное электрическое сопротивление, тем хуже он будет проводить ток.

Во-вторых, от длины провода. И здесь зависимость прямая. С увеличением длины сопротивление возрастает.

В-третьих, от толщины. Чем толще проводник, тем меньше у него сопротивление.

И наконец, в-четвертых, от температуры проводника. И здесь все не так однозначно. Если речь идет о металлах, то их электрическое сопротивление возрастает по мере нагревания. Исключение составляют некоторые специальные сплавы — их сопротивление практически не изменяется при нагревании. К ним относятся: константан, никелин и манганин. Когда же нагреваются жидкости, то их сопротивление уменьшается.

Области применения

Использование латуни охватывает самые разнообразные сферы человеческой деятельности. Так, золотистый цвет сплава обусловил его использование в бижутерии и в различных декоративных элементах. Также его используют в котельном деле, при производстве военного снаряжения и амуниции, при изготовлении проволок и труб конденсаторов, электрических терминалов и денежных монет.

Благодаря устойчивости к разрушению в соленой воде металл используется при изготовлении снаряжения различных морских судов, а его акустические свойства позволяют делать духовые инструменты: трубы и аккордеоны. Благодаря бактерицидным свойствам, сплав используется для изготовления дверных ручек в больницах и госпиталях.

Если говорить о применении в качестве декора, то следует выделить производство ламп, светильников, карнизов и некоторых ювелирных изделий. Такого рода вещи производятся в основном в странах восточной Европы, на территории стран СНГ, а также во многих арабских и некоторых государствах Азии.

Одно из интересных свойств латуни, которое является необычным для металлов, заключается в отсутствии искр при механическом воздействии на изделие. Эта уникальная характеристика дает возможность использовать материал в качестве сосудов для хранения и транспортировки легковоспламеняющихся жидкостей.

Благодаря легкости механической обработки, высокой износостойкости и невысокой цене, материал используется для изготовления разнообразных вентилей. Из-за высокой сопротивляемости коррозии и кавитации используется латунь для изготовления винтов судов. Также материал использует при производстве некоторых деталей современных компьютеров.

Что такое сопротивление медного провода

В металлах ток образуется при появлении электрического поля. Оно «заставляет» двигаться электроны упорядоченно, в одном направлении. Электроны дальних орбит атома, слабо удерживаемые ядром, формируют ток.


Медные провода

При прохождении отрицательных частиц сквозь кристаллическую решетку молекул меди, они сталкиваются с атомами и другими электронами. Возникает препятствие или сопротивление направленному движению частиц.

Для оценки противодействия току была введена величина «электрическое сопротивление» или «электрический импеданс». Обозначается она буквой «R» или «r». Вычисляется сопротивление по формуле Георга Ома: R=, где U — разность потенциалов или напряжение, действующее на участке цепи, I — сила тока.


Понятие сопротивления

Важно! Чем выше значение импеданса металла, тем меньший ток проходит по нему, и именно медные проводники так широко распространены в электротехнике, благодаря этому свойству. Исходя из формулы Ома, на величину тока влияет приложенное напряжение при постоянном R

Но резистентность медных проводов меняется, в зависимости от их физических характеристик и условий эксплуатации

Исходя из формулы Ома, на величину тока влияет приложенное напряжение при постоянном R. Но резистентность медных проводов меняется, в зависимости от их физических характеристик и условий эксплуатации.

Температурная зависимость ρ(Т)

Для большинства материалов проведены многочисленные эксперименты по измерению значений удельных сопротивлений. Данные по большинству проводников можно найти в справочных таблицах.

Удельное сопротивление металлов и сплавов, Ом*мм2/м

(при Т = 20С)

Серебро 0,016 Бронза (сплав) 0,1
Медь 0,017 Олово 0,12
Золото 0,024 Сталь (сплав) 0,12
Алюминий 0,028 Свинец 0,21
Иридий 0,047 Никелин (сплав) 0,42
Молибден 0,054 Манганин (сплав) 0,45
Вольфрам 0,055 Константан (сплав) 0,48
Цинк 0,06 Титан 0,58
Латунь (сплав) 0,071 Ртуть 0,958
Никель 0,087 Нихром (сплав) 1,1
Платина 0,1 Висмут 1,2

Чаще всего приводятся значения ρ при нормальной, то есть комнатной температуре 20С. Но оказалось, что при повышении температуры удельное сопротивление возрастает по линейному закону в соответствии с формулой:

$ ρ(Т) = ρ0 * (1 + α*T)$ (6),

где: ρ — удельное сопротивление проводника при температуре 0С, α — температурный коэффициент удельного сопротивления, который тоже имеет для каждого вещества свое, индивидуальное, значение. Из формулы (6) следует, что коэффициент α имеет размерность или .

Рис. 2. Температурная зависимость удельного сопротивления проводника

В соответствии с законом Джоуля-Ленца при протекании электрического тока т выделяется тепло, а значит происходит рост температуры проводника. Кроме этого, в зависимости от области применения, электрические приборы могут работать как при пониженных (минусовых), так и при высоких температурах. Для точных расчетов электрических цепей необходимо учитывать зависимость ρ(Т). Величину α для конкретного материала можно узнать из справочной литературы.

Рис. 3. Справочные значения температурного коэффициента удельного сопротивления проводников

Латунь

Температура плавления: 880—950° СПлотность: 8300-8700 кг/м³
Удельная теплоёмкость: при 20 °C — 0,377 кДж·кг−1·K−1Удельное электрическое сопротивление: (0,07-0,08)×10−6 Ом·м

Общая характеристика латуни: латуни представляют собой двойные или многокомпонентные медные сплавы, в которых цинк является основным легирующим компонентом. По сравнению с медью они обладают более высокой прочностью (в том числе при повышенных температурах), коррозионной стойкостью, упругостью, технологичностью (литье, обработка давлением, резание), трибологическими характеристиками. Это наиболее дешевые и распространенные в машиностроении медные сплавы.
Двойные латуни, содержащие до 20 % Zn, называются томпаком (латуни, содержащие 14—20 % Zn — полутомпаком).

Диаграмма состояния Сu—Zn характеризуется пятью перитектическими реакциями. В результате из жидкого раствора кристаллизуется шесть различных фаз. Практическое значение имеют сплавы, содержащие до 50 % Zn; соответствующая этому содержанию часть диаграммы состояния включает область а-твердого раствора цинка в меди. Граница растворимости цинка в меди при комнатной температуре равна 39 %; а-твердый раствор имеет гранецентрированную кристаллическую решетку. Фаза в является твердым раствором на основе соединения CuZn с объемно центрированной кристаллической решеткой. Ширина области гомогенности в-фазы меняется в зависимости от температуры: от 37 до 57 % Zn при высоких температурах и от 45 до 49 % Zn при комнатной.

В соответствии с диаграммой состояния двойные латуни в зависимости от структуры подразделяются на а-латуни, (а + в)-латуни и в-латуни.

При температуре 454—468 °С происходит упорядочение в-твердого раствора, т. е. ниже этих температур наблюдается определенный порядок в расположении атомов меди и цинка в кристаллической решетке в-фазы. Переход неупорядоченного твердого раствора в упорядоченное состояние сопровождается резким падением пластичности и повышением хрупкости сплавов, что затрудняет их обработку давлением в холодном состоянии.

Таким образом, латуни, содержащие более 39 % Zn, имеют двухфазную структуру а + в или однофазную в и обладают низкой пластичностью, поэтому они хорошо обрабатываются давлением лишь в горячем состоянии, в отличие от а-латуни, которая хорошо обрабатывается в холодном состоянии.

В многокомпонентных (специальных) латунях добавки третьего, четвертого элемента и более могут повышать прочность, твердость, упругость, коррозионную стойкость, антифрикционные свойства и технологические характеристики. В зависимости от дополнительных легирующих элементов латунь, содержащую А1, называют алюминиевой; Fe и Мп — железомарганцевой; Мn, Sn, Pl — марганцево-оловянно-свинцовой и т. д.

Двойные латуни маркируют буквой Л и числом, характеризующим среднее содержание меди в сплаве в %. В обозначении многокомпонентных латуней после буквы Л указывают легирующие элементы. Числа после букв означают содержание легирующих элементов.

По технологическому признаку латуни подразделяют на литейные и обрабатываемые давлением. Для изготовления литейных латуней могут применяться вторичные литейные латуни.

Получение латуни: Для плавки латуни может быть использован любой тип плавильных печей, применяемых для плавки медных сплавов. Но наиболее целесообразно латунь плавить в электрических индукционных низкочастотных печах с магнитопроводом. Менее желательна плавка латуни в электродуговых плавильных печах.

При плавке медноцинковых сплавов следует иметь в виду, что из всех других компонентов сплава наибольшей окисляемостью обладает цинк. Это объясняется низкой температурой кипения его.

Для уменьшения окисления цинка рекомендуются следующие мероприятия:

1) максимально ускорять процесс загрузки и плавки шихты, для этого загружать шихту в печь в компактном виде таким образом, чтобы куски и пакеты могли хорошо и плотно укладываться в печи;

2) поверхность жидкого сплава следует покрывать кусковым древесным углем;

3) загрузочное отверстие печи по возможности держать всегда закрытым;

4) не допускать излишнего перегрева расплава (выше температуры 1100—1200° С).

В качестве шихты для плавки латуни могут быть использованы как чистые, так и оборотные металлы. При плавке латуни на оборотных металлах порядок загрузки шихты в печь не имеет большого значения. При наличии в шихте свежих металлов в первую очередь загружают и расплавляют медь, затем оборотные металлы. Цинк и свинец, предварительно подогретые до 100—120° С, вводят в расплав в последнюю очередь. Во всех случаях плавка ведется под слоем древесного угля, который загружается в печь с первой порцией шихты.

Плавку латуни из свежих металлов и оборотных отходов в индукционной печи промышленной частоты с магнитопроводом рекомендуется вести в следующей последовательности.

1. По окончании разливки печь устанавливают в рабочее положение. При обнаружении оголенного канала печи выключают ток и канал заливают расплавленным металлом из другой плавильной печи.

2. Аккуратно загружают два-три пакета отходов, включают ток и производят дальнейшую загрузку шихты в печь в следующем порядке: вначале загружают предварительно подсушенные прессованные отходы в количестве 15—20% от массы всей шихты, стружку, опилки и другую мелочь; затем в жидкий металл загружают медь и тугоплавкие лигатуры (в случае плавки специальных латуней); одновременно с этим в печь загружают необходимое количество кускового древесного угля; после этого осторожно загружают переплавленные отходы и литники и в последнюю очередь загружают цинк и другие легкоплавкие компоненты (в случае приготовления специальных латуней).

3. Во избежание повреждения футеровки печи масса кусков шихтовых материалов не должна превышать 25 кг.

4. Шахта печи должна загружаться плотно и быстро, загрузочное окно при этом не должно долго оставаться открытым.

5. При плавке надо следить за тем, чтобы шихта не зависала в шахте. Быстрое колебание стрелки амперметра сигнализирует о том, что шихта отделена от расплавленного металла. Зависшую шихту с помощью деревянного шеста или какого-либо другого приспособления опускают вниз. При зависании шихты время плавки удлиняется и увеличивается угар металла.

6. В случае ведения плавки латуни на чистых металлах (меди и цинка) вначале загружают 25% шихты (вместе медь и цинк), затем всю оставшуюся медь и в последнюю очередь цинк (или другой легкоплавкий металл).

7. Шихта должна быть сухой; загрузка влажной шихты запрещается.

8. Тяжелые куски шихты должны загружаться в печь при помощи специальных приспособлений.

9. Шихта должна подаваться к печи в нумерованной таре (тележке). Это исключает смешивание шихты.

10. Необходимо иметь около печи некоторый запас шихты (две-три тележки).

11. После расплавления и нагрева расплава до заданной температуры с поверхности расплава снимают шлак, тщательно перемешивают и производят разливку.

Для увеличения жидкотекучести латуни в нее иногда перед разливкой добавляют фосфор в виде лигатуры медь — фосфор, содержащей 12—14% Р.

Плавку кремнистой и кремнистосвинцовистой латуней ведут под покровным флюсом — стеклом или бурой. Вследствие склонности кремнистых латуней к поглощению восстановительных газов плавить их в восстановительной атмосфере или под слоем древесного угля нельзя.

При плавке кремнистых и кремнистосвинцовистых латуней в первую очередь в разогретую печь загружают медь, по расплавлении ее — отходы, меднокремнистую лигатуру. Цинк и свинец загружают в последнюю очередь после снятия шлака с расплава. Расплав тщательно перемешивают, доводят его до температуры разливки и затем разливают.

Плавку марганцовистых латуней ведут в условиях слабоокислительной атмосферы или близкой к нейтральной под покровом флюса из битого стекла, или под покровом древесного угля. Марганец в расплав вводят с лигатурами после расплавления всех других составляющих шихты.

Удельное электрическое сопротивление

Дальнейшие исследования позволили установить связь величины электрического сопротивления с его основными геометрическими размерами. Оказалось, что сопротивление проводника прямо пропорционально длине проводника L и обратно пропорционально площади поперечного сечения проводника S.

Эта функциональная связь хорошо описывается следующей формулой:

$ R = ρ *{ L\over S} $ (4)

Постоянная для каждого вещества величина ρ была названа удельным сопротивлением. Значение этого параметра зависит от плотности вещества, его кристаллической структуры, строения атомов и прочих внутренних характеристик вещества. Из формулы (4) можно получить формулу для расчета удельного сопротивления, если имеются экспериментальные значения для R, L и S:

$ ρ = R*{ S\over L } $ (5)

Для большинства известных веществ измерения были произведены и внесены в справочные таблицы электрических сопротивлений проводников.

Удельное сопротивление металлов, Ом*мм2/м

(при Т = 20С)

Серебро 0,016 Бронза (сплав) 0,1
Медь 0,017 Олово 0,12
Золото 0,024 Сталь (сплав) 0,12
Алюминий 0,028 Свинец 0,21
Иридий 0,047 Никелин (сплав) 0,42
Молибден 0,054 Манганин (сплав) 0,45
Вольфрам 0,055 Константан (сплав) 0,48
Цинк 0,06 Титан 0,58
Латунь (сплав) 0,071 Ртуть 0,958
Никель 0,087 Нихром (сплав) 1,1
Платина 0,1 Висмут 1,2

Экспериментально было обнаружено, что с понижением температуры сопротивление металлов уменьшается. При приближении к температуре абсолютного нуля, которая равна -273С, сопротивление некоторых металлов стремится к нулю. Это явление называется сверхпроводимостью. Атомы и молекулы как бы “замораживаются”, прекращают любое движение и не оказывают сопротивления потоку электронов.

Физическое представление

В технических расчетах, предполагающих прокладку кабелей различных диаметров, используются параметры, позволяющие рассчитать необходимую длину кабеля и его электрические характеристики. Одним из основных параметров является удельное сопротивление. Формула удельного электрического сопротивления:

ρ = R * S / l, где:

  • ρ — это удельное сопротивление материала;
  • R — омическое электросопротивление конкретного проводника;
  • S — поперечное сечение;
  • l — длина.

Размерность ρ измеряется в Ом•мм2/м, или, сократив формулу — Ом•м.

Значение ρ для одного и того же вещества всегда одинаковое. Следовательно, это константа, характеризующая материал проводника. Обычно она указывается в справочниках. Исходя из этого уже можно проводить расчет технических величин.

Важно сказать и об удельной электрической проводимости. Эта величина является обратной удельному сопротивлению материала, и используется наравне с ним. Ее также называют электропроводностью. Чем выше эта величина, тем лучше металл проводит ток. Например, удельная проводимость меди равна 58,14 м/(Ом•мм2). Или, в единицах, принятых в системе СИ: 58 140 000 См/м. (Сименс на метр — единица электропроводности в СИ).

Таблица сопротивления металлов

Чтобы убедиться в преимуществах меди, надо сделать соответствующий сравнительный анализ. Ниже приведены значения сопротивлений металлов в сводной таблице.

Основные электрические параметры проводников, созданных из разных материалов

МатериалУдельное сопротивление в Омах на метр, замеренное при комнатной температуре (+20°C)Удельная электропроводность при аналогичных условиях, в сименсах на метр
Медь1,68х10^-35,96х10^7
Серебро1,59х10^-36,3х10^7
Золото2,44х10^-34,1х10^7
Алюминий2,82х10^-33,5х10^7
Вольфрам5,6х10^-31,79х10^7
Железо1х10^-71х10^7
Платина1,06х10^-79,43х10^6
Литий9,28х10^-81,08х10^7

Важно! Малого сопротивления проводника из железа недостаточно для широкого применения соответствующих изделий на практике. Активное окисление провоцирует быстрое разрушение

Тонкие плёнки

Сопротивление тонких плоских плёнок (когда её толщина много меньше расстояния между контактами) принято называть «удельным сопротивлением на квадрат», RSq.{\displaystyle R_{\mathrm {Sq} }.} Этот параметр удобен тем, что сопротивление квадратного куска проводящей плёнки не зависит от размеров этого квадрата, при приложении напряжения по противоположным сторонам квадрата. При этом сопротивление куска плёнки, если он имеет форму прямоугольника, не зависит от его линейных размеров, а только от отношения длины (измеренной вдоль линий тока) к его ширине L/W

: RSq=RWL,{\displaystyle R_{\mathrm {Sq} }=RW/L,} где
R
— измеренное сопротивление. В общем случае, если форма образца отличается от прямоугольной, и поле в плёнке неоднородное, используют метод ван дер Пау.

Сходства и различия

Сплав латуни по большей части состоит из меди, поэтому естественно, что они похожи не только визуально, но и некоторыми свойствами. Чем больше меди в сплаве, тем сильнее их цвета будут схожи. На этом точные совпадения заканчиваются.

Визуально легко отличаются сплавы латуни, где меди менее 80%. Они слегка похожи на золото, так как имеют выраженный желтый оттенок. Чем больше цинка, тем оттенок светлее.

Из-за этого латунь даже используют для подделки или имитации золота. У меди же главный оттенок – красноватый, который часто отливает розовым.

При сильном понижении температуры латунь не теряет своей, сравнительно ограниченной, пластичности и не становится хрупкой. Электричество и тепло проводит хуже.

Отличаются они по такому признаку, как твердость.

Медь мягче, пластичнее, а латунь, наоборот, твердая и придать ей какую-либо форму без применения отжига сложно.

Стружка также получается разная: у латуни – игольчатая, у меди – закрученная в спираль.

Рассмотрим свойства, которые имеет латунь и медь, есть ли у них отличия:

МедьЛатунь
Пластичная, мягкаяТвердая
Красновато-коричнево -розовый оттенокЗолотистый оттенок
Звук ниже при удареВысокий звук
ТяжелаяЛегче
Стружка скручивается в спиральСтружка игольчатая
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]