Медь – это пластичный золотисто-розовый металл с характерным металлическим блеском. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Сu (Cuprum) и находится под порядковым номером 29 в I группе (побочной подгруппе), в 4 периоде.
Латинское название Cuprum произошло от имени острова Кипр. Известны факты, что на Кипре ещё в III веке до нашей эры находились медные рудники и местные умельцы выплавляли медь. Купить медь можно в комании «КУПРУМ».
По данным историков, знакомству общества с медью около девяти тысячелетий. Самые древние медные изделия найдены во время археологических раскопок на местности современной Турции. Археологи обнаружили маленькие медные бусинки и пластинки для украшения одежды. Находки датируются рубежом VIII-VII тыс. до нашей эры. Из меди в древности изготавливали украшения, дорогую посуду и различные инструменты с тонким лезвием.
Великим достижением древних металлургов можно назвать получение сплава с медной основой – бронзы.
Основные свойства меди
Физические свойства.
На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.
Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.
Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.
Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток, протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.
Химические свойства.
Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) – верхнего слоя платины. Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.
Сплавы меди с никелем
Медноникелевые сплавы — это сплавы на основе меди, в которых основным легирующим компонентом является никель. По назначению их подразделяют на конструкционные и электротехнические сплавы. Куниаль (медь-никель-алюминий) содержит 6-13% никеля, 1,5-3% алюминия, остальное — медь. Куниали подвергают термической обработке (закалка-старение). Куниали служат для изготовления деталей повышенной прочности, пружин и ряда электротехнических изделий. Нейзильберы (медь-никель-цинк) содержат 15% никеля, 20% цинка, остальное медь. Нейзильберы имеют белый приятный цвет, близкий к цвету серебра. Они хорошо сопротивляются атмосферной коррозии; применяют в приборостроении и производстве часов. Мельхиоры ( медь-никель и небольшие добавки железа и марганца до 1%) обладают высокой коррозионной стойкостью, в частности в морской воде. Их применяют для изготовления теплообменных аппаратов, штампованных и чеканных изделий. Копель (медь-никель 43%-марганец 0,5%) — специальный термоэлектродный сплав для изготовления термопар. Манганин (медь-никель 3%-марганец 12%) — специальный сплав с высоким удельным электросопротивлением, используемый в электротехнике для изготовления электронагревательных элементов. Константан (медь-никель 40%-марганец 1,5%) имеет такое же назначение, как и манганин. |
Источники информации:
©Гуков Константин Михайлович 2006 — 2013 Почта: |
Способы получения меди
В природе медь существует в соединениях и в виде самородков. Соединения представлены оксидами, гидрокарбонатами, сернистыми и углекислыми комплексами, а также сульфидными рудами. Самые распространённые руды — это медный колчедан и медный блеск. Содержание меди в них составляет 1-2%. 90% первичной меди добывают пирометаллургическим способом и 10% гидрометаллургическим.
1. Пирометаллургический способ включает в себя такие процессы: обогащение и обжиг, плавка на штейн, продувка в конвертере, электролитическое рафинирование. Обогащают медные руды методом флотации и окислительного обжига. Сущность метода флотации заключается в следующем: частицы меди, взвешенные в водной среде, прилипают к поверхности пузырьков воздуха и поднимаются на поверхность. Метод позволяет получить медный порошкообразный концентрат, который содержит 10-35% меди.
Окислительному обжигу подлежат медные руды и концентраты со значительным содержанием серы. При нагреве в присутствии кислорода происходит окисление сульфидов, и количество серы снижается почти в два раза. Обжигу подвергаются бедные концентраты, в которых содержится 8-25% меди. Богатые концентраты, содержащие 25-35% меди, плавят, не прибегая к обжигу.
Следующий этап пирометаллургического способа получения меди – это плавка на штейн. Если в качестве сырья используется кусковая медная руда с большим количеством серы, то плавку проводят в шахтных печах. А для порошкообразного флотационного концентрата применяют отражательные печи. Плавка происходит при температуре 1450 °С.
В горизонтальных конвертерах с боковым дутьём медный штейн продувается сжатым воздухом для того, чтобы произошли процессы окисления сульфидов и феррума. Далее образовавшиеся окислы переводят в шлак, а серу в оксид. В конвертере образуется черновая медь, которая содержит 98,4-99,4% меди, железо, серу, а также незначительное количество никеля, олова, серебра и золота.
Черновая медь подлежит огневому, а далее электролитическому рафинированию. Примеси удаляют с газами и переводят в шлак. В результате огневого рафинирования образуется медь с чистотой до 99,5%. А после электролитического рафинирования чистота составляет 99,95%.
2. Гидрометаллургический способ заключается в выщелачивании меди слабым раствором серной кислоты, а затем выделении металлической меди непосредственно из раствора. Такой способ применяется для переработки бедных руд и не допускает попутного извлечения драгоценных металлов вместе с медью.
Механические свойства различных марок меди при стандартных статических испытаниях на растяжение при температуре 20°С незначительно отличаются друг от друга.
Механические свойства бескислородной меди М16 при стандартных статических испытаниях на растяжение приведены в табл. 1.
Табл. 1. Механические свойства бескислородной меди марки М1б
Свойства | Состояние | |
деформированное | отожженое | |
Временное сопротивление σb , МПа | 340…450 | 220…250 |
Предел текучести σ0,2 , Мпа | 280-420 | 60-75 |
Относительное удлинение δ , % | 4…6 | 40…50 |
Относительное сужение ψ, % | 35…45 | 70…80 |
Твердость по Бринеллю, HB | 90…110 | 45 |
Предел выносливости σ-1, Мпа, (Т=108 циклов; kσ*=1) | 100…120 | 70…80 |
Ударная вязкость KCU, МДж/м2 | 1,0 | 1,70 |
*kσ — коэффициент концентрации напряжений
Влияние степени холодной деформации и температуры отжига на механические свойства меди показано на рис. 1 и 2.
Рис. 1 Влияние степени холодной деформации (%) на механические свойства меди: 1 — кислородсодержащей; 2 — раскисленной фосфором, с высоким остаточным содержанием фосфора
Рис. 2. Влияние температуры отжига (в течение часа) на механические свойства кислородсодержащей меди М1
Содержание кислорода в меди влияет на ударную вязкость и технологическую пластичность.
Например, ударная вязкость горячекатаных медных полос (99.9% Cu) с различным содержанием кислорода составляет:
О2, % 0,026 0,030 0,034 0,042
KCU,кДж/м2 860 560 510 270
Влияние кислорода на технологическую пластичность на примере медной проволоки диаметром 2,6 мм в твердом состоянии и с содержанием меди 99,90% следующее:
Способ получения | Число гибов при радиусе равном 5 мм | Число скручиваний загиба, на длине 152 мм |
Бескислородная | 12 | 92 |
Бескислородная | 7 | 45 |
Медь и многие ее сплавы имеют зоны пониженной пластичности («провала» пластичности). При этом у кислородсодержащей меди наблюдается явно выраженная зона пониженной пластичности при температурах 300…500°С; у меди, раскисленной фосфором и с большим его остаточным содержанием (0,04%), также наблюдается пониженная пластичность в этом интервале температур. С повышением чистоты меди зона пониженной пластичности уменьшается, а у бескислородной меди высокой чистоты (99,99%) эта зона практически отсутствует. Зона пониженной пластичности отсутствует и у меди, раскисленной бором (0,01% В).
При отрицательных температурах медь имеет более высокие прочность и пластичность, чем при температуре 20°С.
Механические свойства меди, на примере применяемой для электродов контактной сварки, при высоких температурах приведены в табл. 2.
Табл. 2. Механические свойства меди при высоких температурах | |||||||
Свойства | Температура, °С | ||||||
20 | 200 | 300 | 400 | 500 | 600 | 700 | |
Временное сопротивление σb , МПа | 220 | 200 | 150 | 110 | 70 | 50 | 30 |
Предел текучести σ0,2 , Мпа | 60 | 50 | 50 | 40 | 30 | 20 | 10 |
Относительное удлинение δ , % | 45 | 45 | 40 | 38 | 47 | 57 | 71 |
Относительное сужение ψ, % | 90 | 88 | 77 | 73 | 86 | 100 | 100 |
Твердость по Виккерсу, HV | 50 | 40 | 38 | 35 | 19 | 1 | 9 |
Ударная вязкость KCU, МДж/м2 | 1,7 | 1,5 | 1,4 | 1,4 | 1,2 | 0,9 | 0,8 |
Длительная твердость HV (в течение 1 часа) | — | — | — | 25 | 10 | 6 | 5 |
Характеристики упругости. Упругие свойства изотропного материала характеризуются модулями нормальной упругости Е (модуль Юнга), сдвига G и объемного сжатия Есж, а также коэффициентом Пуассона (µ). Значения модулей Е и G в интервале температур 300… 1300К уменьшаются по линейному закону. Лишь в области низких температур наблюдается отклонение от равномерного изменения модулей (табл. 3).
Табл. 3. Модули упругости и сдвига меди при различных температурах | |||||||||
Модули, ГПа | Температура, К | ||||||||
4,2 | 100 | 200 | 300 | 500 | 700 | 900 | 1100 | 1300 | |
Е | 141 | 139 | 134 | 128 | 115 | 103 | 89,7 | 76,8 | 63,7 |
G | 50 | 49,5 | 47,3 | 44,7 | 37,8 | 31 | 24,1 | 18,5 | 11,5 |
Регламентированные механические свойства продукции из меди при различных способах изготовления, состояниях поставки и размерах приведены в табл. 4 — 7.
Как правило, на лентах толщиной менее 0,5 мм, а также на лентах толщиной 0,5… 1,5 мм в мягком состоянии, используемых для штамповки, временное сопротивление и относительное удлинение не определяют, а проводят испытания на выдавливание лунки по Эриксену (см. табл. 5).
Табл. 4. Плоский прокат из меди. Размеры и механические свойства | ||||||
Продукция, стандарт или технические условия | Марка | Изгот. | Сост. пост. | Толщина, мм | Временное сопротивление σb , МПа | Относительное удлинение δ10, % |
не менее | ||||||
Плиты из раскисленной меди, ТУ 48-21-517-85 | M1p | ГК | — | 75…11О | 180 | 20 |
Листы общего назначения, ГОСТ 1173-2006 | M1, M1p, М1ф, М2, М2р, М3, МЗр | ГК | — | 3…25 | 200 | 30 |
ХК | М | 0,05… 12 | 200…260 | 36 | ||
ПТ | 240…310 | 12 | ||||
Тв | 290 | 3 | ||||
Листы и полосы повышенного качества ТУ 48-21-664-79 | M1 | ЛХК | М | 3…8 | 200 | 36 |
ЛГК | — | 8…10 | 200 | 30 | ||
ПХК | М | 3…6 | 200 | 36 | ||
Шины для электротехнических целей, ГОСТ 434-78 | M1 | ХК | М | св. 7 | — | 35 |
Ленты общего назначения, ГОСТ 1173-2006 | M1, M1p, М1ф, М2, M2p, М3, МЗр | ХК | М | 0,1…6 | 200…260 | 36 |
ПТ | 240…310 | 12 | ||||
Тв | 290 | 3 | ||||
Ленты для коаксиальных магистральных кабелей, ГОСТ 16358-79 | M1 | хк | М | 0,16…0,3 | 210 | δ5≥25 |
Ленты для капсюлей, ГОСТ 1018-77 | M1, M1p, М2, M2p | ХК | М | 0,35…1,86 | 200 | 36 |
Ленты для электротехн ических целей, ТУ 48-21-854-88 | M1, М2 | ХК | М | до 0,2 | — | — |
0,2…2,5 | — | 36 | ||||
2,5—3,53 | — | 36 | ||||
3,55…5,5 | — | 36 | ||||
Тв | до 0,2 | 310 | — | |||
0,2…2.5 | 310 | — | ||||
2,5…3,53 | 284 | |||||
3,55…5,5 | 284 | — | ||||
Фольга рулонная для технических целей, ГОСТ 5638-75 | M1, М2 | ХК | Тв | 0,015…0,05 | 290 | — |
Условные обозначения: | ||||||
ГК — горячекатаные; ХК — холоднокатаные; ЛХК листы холоднокатаные; Л ГК — листы горячекатаные; ПХК — полосы холоднокатаные; М — мягкое; ПТ — полутвердое; Тв — твердое. |
Табл. 5. Характеристики холоднокатаных лент при испытании по Эриксену (радиус пуансона 10 мм) | ||||
Ленты | Марка | Состояние | Толщина, мм | Глубина лунки, мм, не менее |
Общего назначения, ГОСТ 1173-2006 | M1, M1p, М1p, М2, М2р, М3, МЗр | мягкое | 0,1…0,14 | 7 |
0,14…0,16 | 7 | |||
0,16…0,28 | 8 | |||
0,28…0,55 | 8,5 | |||
0,55…0,6 | 9 | |||
0,6…1,1 | 9,5 | |||
1,1…1,5 | 10 | |||
Радиаторные, ГОСТ 20707-80 | M1, М2, М3 | мягкое | 0,06…0,07 | 4,5…9.0 |
0,08…0,09 | 6,0…9,0 | |||
0,1 | 7,5 | |||
0,12…0,15 | 7,5 | |||
0,17…0,25 | 8 | |||
твердое | 0,1 | 1,5…3,5 | ||
0,12…0,15 | 1,5…3,5 | |||
Для электротехнических целей, ТУ 48-21-854-88 | M1 | мягкое | 0,1…0,15 | 7,5 |
0,2…0,25 | 8 | |||
0,3…0,5 | 8,2 | |||
0,6…1 | 9,5 |
Таблица 6. Трубы и трубки из меди. Размеры и механические свойства | ||||||
Продукция, стандарт или технические условия | Марка | Изгот. | Сост. пост. | Диаметр, мм / Толщина стенки, мм | Временное сопротивление σb , МПа | Относительное удлинение δ10, % |
не менее | ||||||
Трубы общего назначения, ГОСТ 617-2006 | M1, M1p, М1ф, М2р, МЗр, М2, М3 | ХД | М | 3…360 / 0,8…10 | 200 | 35 |
ПТ | 240 | 8 | ||||
Тв | 280 | |||||
Пр | — | до 200 / 5…30 | 190 | 30 | ||
>200 / 5…30 | 180 | 30 | ||||
Трубы квадратные и прямоугольные е круглым отверстием, ТУ48-21-497-81 | M1, M1p, М1ф, М2р, МЗр, М2, М3 | Т, П | М | b; h; d | 200 | 35 |
15…20,5; | ||||||
13.5…14; | ||||||
6…12,5 | ||||||
Пр | b; h; d | 190 | 30 | |||
36…120; | ||||||
16…36; | ||||||
11…28 | ||||||
Трубы медные, ТУ 48-21-482-85 | M1, M1p, М1ф, М2р, МЗр, М2, М3 | Пр | — | 30 / 9 | 190 | 30 |
Трубки медные тонкостенные, ТУ 48-21-161-85 | M1, М2 | Т | М | 0,8…2 / 0,15…0,5 | 210 | 35 |
Тв | — | 4 | ||||
Трубки медные тонкостенные. ГОСТ 11383-75 | M1, М2, М3 | Т | М | 1,5…28 / 0,15…0,7 | 210 | 35 |
Тв | 340 | 2 | ||||
Трубы медные круглого сечения для воды и газа ГОСТ 52318-2005 | M1p, М1ф | Т | М | 6…22 / 0,5…1.5 | 220 | δ10≥40 |
ПТ | 6…54 / 0,5…2 | 250 | δ10≥20 | |||
Тв | 6…267 / 0,5…3 | 290 | δ10≥3 | |||
Условные обозначения: | ||||||
ХД — холоднодеформированные; Пр — прессованные; Т гянутые; | ||||||
П — прокатанные: М — мягкое; ПТ — полутвердое; Тв — твердое; h, h,d — ширина, высота, диаметр отверстия. |
Таблица 7. Прутки, катанка и проволока из меди. Размеры и механические свойства | ||||||
Продукция,стандарт или технические условия | Марка | Изгот. | Сост. пост. | Размеры, мм | Временное сопротивление σb , МПа | Относительное удлинение δ10, % |
не менее | ||||||
Прутки квадратные, ТУ 48-21-97-72 | М2 | Пр | — | 42…94 | 200 | 30 |
Прутки, IOCT 1535-2006 | M1, M1p, Мф, М2р, МЗр, М2, М3 | Т | М | 3…50 | 200 | 35 |
ПТ | 240 | 10 | ||||
Тв | 270 | 5 | ||||
Пр | — | 20…50 | 190 | 30 | ||
Профили из бескислородной меди, ТУ 48-21-637-79 | М0б | Т | М | b x h 11,4 x 8 | 200 | 38 |
Проволока для заклепок, ТУ 48-21-456-2006 | M1, М2 | Т | Тв | d 1…2 | 240 | 8 |
d 2…10,7 | 240 | 15 | ||||
Проволока из бескислородной меди, ТУ 48-21-158-72 | М0б | Т | М | d 3,5;4,2 | 200 | 30 |
Проволока крешерная, ГОСТ 4752-79 | М0б | ХД | Тв | d 3…10 | 320… | — |
360 | ||||||
Проволока для электротехнических целей, ГОСТ 434-78 | М0, M1 | Т | М | d до 2,5 | — | 35 |
d 2,5…7 | — | 35 | ||||
d 7…10 | — | 35 | ||||
d св. 10 | — | 35 | ||||
Тв | d до 2,5 | 310 | — | |||
d 2,5…7 | 290 | — | ||||
d 7…10 | 270 | — | ||||
d св. 10 | 270 | — | ||||
Катанка медная, ТУ 16705.491-2001 | не ниже M1 | НЛ | — | d 8…23 | 160 | 35 |
Условные обозначения: | ||||||
Пр — прессованные; Т — тянутые; ХД — холоднодеформированная; НЛ — непрерывное литье и прокатка; | ||||||
М — мягкое; ПТ — полутвердое; Тв — твердое; b — ширина; h — высота; d — диаметр. |
Применение меди
Благодаря ценным качествам медь и медные сплавы используются в электротехнической и электромашиностроительной отрасли, в радиоэлектронике и приборостроении. Существуют сплавы меди с такими металлами, как цинк, олово, алюминий, никель, титан, серебро, золото. Реже применяются сплавы с неметаллами: фосфором, серой, кислородом. Выделяют две группы медных сплавов: латуни (сплавы с цинком) и бронзы (сплавы с другими элементами).
Медь обладает высокой экологичностью, что допускает её использование в строительстве жилых домов. К примеру, медная кровля за счёт антикоррозионных свойств, может прослужить больше ста лет без специального ухода и покраски.
Медь в сплавах с золотом используется в ювелирном деле. Такой сплав увеличивает прочность изделия, повышает стойкость к деформированию и истиранию.
Для соединений меди характерна высокая биологическая активность. В растениях медь принимает участие в синтезе хлорофилла. Поэтому её можно увидеть в составе минеральных удобрений. Недостаток меди в организме человека может вызвать ухудшение состава крови. Она есть в составе многих продуктов питания. К примеру, этот металл содержится в молоке. Однако важно помнить, что избыток соединений меди может вызвать отравление. Именно поэтому нельзя готовить пищу в медной посуде. Во время кипячения в пищу может попасть большое количество меди. Если же посуда внутри покрыта слоем олова, то опасности отравления нет.
В медицине медь используют, как антисептическое и вяжущее средство. Она является компонентом глазных капель от конъюнктивита и растворов от ожогов.
Латунь
Латунь — сплав на основе меди, где основным легирующим элементом является цинк (от 5 до 45%). Марка латуни составляется из буквы «Л», указывающей тип сплава — латунь, и двузначной цифры, характеризующей среднее содержание меди. Например, марка Л80 — латунь, содержащая 80% Cu и 20% Zn. Латунь подразделяют на двойные и многокомпонентные. Двойные медно цинковые сплавы — простые или двойные латуни, многокомпонентные — специальные латуни. Двойные латуни, содержащие 88 — 97% меди, называют томпаком
, а содержащие 79 — 80% меди —
полутомпаком
. Так же, в названиях латуней могут быть дополнительные обозначения характеризующие содержание других добавок (кроме меди и цинка). Например, ЛАЖМц66-6-3-2 расшифровывается так: латунь, в которой содержится 66% Cu, 6% Al, 3% Fe и 2% Mn. Цинка в ней 100-(66+6+3+2)=23%. Такие латуни называются многокомпонентными. Дополнительные добавки придают определённые свойства латуням:
Марганец
— повышает прочность и коррозионную стойкость, особенно в сочетании с алюминием, оловом и железом;
Олово
— повышает прочность и сильно повышает сопротивление коррозии в морской воде. Латуни, содержащие олово, часто называют морскими латунями;
Никель
— повышает прочность и коррозионную стойкость в различных средах;
Свинец
— ухудшает механические свойства, но улучшает обрабатываемость резанием. Обычно, такая латунь используется для обработки на станках автоматах и называется автоматной;
Кремний
— ухудшает твёрдость, прочность, но улучшает антифрикционные свойства латуни. Латуни обладают сравнительно высокими механическими свойствами и удовлетворительной коррозионной устойчивостью и, будучи наиболее дешевыми из медных сплавов, имеют широкое распространение во многих отраслях машиностроения.
Двойные деформируемые латуни
Марка | Температура плавления °С | Назначение |
Л60 | Толстостенные патрубки, гайки, детали машин | |
Л62 | 905 | Гайки, болты, детали автомобилей, конденсаторные трубы |
Л68 | 938 | Штампованные изделия |
Л70 | 950 | Гильзы химической аппаратуры |
Л80 | 1099 | Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др. |
Л85 | 1025 | Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др. |
Л90 | 1045 | Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др. |
Л96 | 1070 | Радиаторные и капиллярные трубки |
Многокомпонентные деформируемые латуни
Марка | Удельное электрическое сопротивление Ом * мм2/м | Модуль упругости кГ/мм2 | Назначение |
ЛА77-2 | 0,075 | Конденсаторные трубы морских судов | |
ЛАЖ60-1-1 | 0,09 | 10500 | Детали морских судов |
ЛАН59-3-2 | 0,078 | 10000 | Детали химической аппаратуры, электромашин, морских судов |
ЛЖМа59-1-1 | 0,093 | 10600 | Вкладыши подшипников, детали самолетов, морских судов |
ЛН65-5 | 0,146 | 11200 | Манометрические и конденсаторные трубки |
ЛМц58-2 | 0,118 | 10000 | Гайки, болты, арматура, детали машин |
ЛМцА57-3-1 | Детали морских и речных судов | ||
Л090-1 | 0,054 | 10500 | Конденсаторные трубы теплотехнической аппаратуры |
Л070-1 | 0,072 | 10600 | Конденсаторные трубы теплотехнической аппаратуры |
Л062-1 | 0,072 | 10000 | Конденсаторные трубы теплотехнической аппаратуры |
Л060-1 | 0,07 | 10500 | Конденсаторные трубы теплотехнической аппаратуры |
ЛС63-3 | 0,066 | 10500 | Детали часов, втулки |
ЛС74-3 | 0,078 | 10500 | Детали часов, втулки |
ЛС64-2 | 0,066 | 10500 | Полиграфические матрицы |
ЛС60-1 | 0,07 | 10500 | Гайки, болты, зубчатые колеса, втулки |
ЛС59-1В | 0,68 | 10500 | Гайки, болты, зубчатые колеса, втулки |
ЛЖС58-1-1 | Детали, изготовляемые резанием | ||
ЛК80-3 | 0,2 | 9800 | Коррозионностойкие детали машин |
ЛМш68-0,05 | Конденсаторные трубы | ||
ЛАМш77-2-0,05 | Конденсаторные трубы | ||
ЛОМш70-1-0,05 | Конденсаторные трубы | ||
ЛАНКМц75-2-2,5-0,5-0,5 | Пружины, манометрические трубы |
Литейные латуни
Марка | Назначение |
ЛЦ16К4 | Детали арматуры |
ЛЦ23А6ЖЗМц2 | Массивные червячные винты, гайки нажимных винтов |
ЛЦЗОАЗ | Коррозионно-стойкие детали |
ЛЦ40С | Литые детали арматуры, втулки, сепараторы, подшипники |
ЛЦ40МцЗЖ | Детали ответственного назначения, работающие при температуре до 300° С |
ЛЦ25С2 | Штуцера гидросистемы автомобилей |
Физические и механические свойства
Раскисленная медь М1 эффективно сопротивляется коррозии, в том числе в стандартных атмосферных условиях, под воздействием морской и пресной воды, агрессивных сред. Поэтому труба медная М1 нередко применяется для конструкций, агрегатов и механизмов, работающих в сложных условиях. Только в аммиаке и сернистых газах материал слабо устойчив.
Чистая медь обладает низким электросопротивлением (0,018 мкОм), вязкостью, прочностью и пластичностью. Она легко обрабатывается давлением и пайкой, но имеет низкие литейные свойства, с трудом режется и сваривается. Служит также для получения износоустойчивых сплавов с повышенными механическими характеристиками.
Материал М1 Челябинск
Без стали не обходится ни одно производство, будь то тяжелое машиностроение или изготовление бытовых электроприборов. Существует множество марок этого продукта, а также большое количество форм отпуска. Наша компания реализует материал М1 большими партиями и с минимальной наценкой. Для уточнения свойств и характеристик конкретной марки можно обратиться к менеджерам компании.
Как и вся продукция, материал М1 закупается у ведущих производителей. Поэтому мы готовы со всей ответственностью давать гарантию на качество. Минимальное количество посредников определяет и низкую стоимость. Вкупе с быстрой доставкой, это дает возможность нашим бизнес-партнеры вести стабильное и взаимовыгодное сотрудничество.
Помимо отпуска, в форме той или иной детали (заготовки), наша компания реализует обработку металлов. Все мероприятия проходят четкий контроль на соответствие ГОСТа и правилам. Специалисты нашего предприятия осуществляют такие работы как оцинкование, создание деталей по чертежам заказчика, производство отливок, изготовление различных профилей и многое другое.
Имея в арсенале новейшее оборудование и огромный, опыт мы можем предложить проверку изделия по ряду параметров, таким как прочностные характеристики, химический состав, чистота сплава и так далее.
Каждому покупателю предложен огромный ассортимент продукции различного формата, а также актуальных услуг и работ. Чтобы быстрее разобраться и выбрать товар соответствующий потребностям, нужно связаться с менеджером компании и получить развернутую информацию по всем интересующим вопросам.
Состав и характеристики
Прочие элементы в сумме должны составлять не более 0,1%. В составе примесей могут содержаться следующие элементы, не более (ГОСТ 859-2001):
- железо – 0,005%;
- никель – 0,002%;
- сера – 0,004%;
- мышьяк – 0,002%;
- свинец – 0,005%;
- цинк – 0,004%;
- кислород – 0,05%;
- сурьма – 0,002%;
- висмут – 0,001%;
- олово – 0,002%.
Медный сплав М1 имеет отличные физические характеристики: высокую электропроводность и низкое (0,018 мкОм) удельное электрическое сопротивление, которое после термообработки отжигом снижается ещё на 2,8%. Пластические свойства сплава позволяют применять его для изготовления деталей, использующихся в неподвижных соединениях с эксплуатационной температурой до 250°C
Из-за очень низкого содержания примесей стоимость меди М1 на 20% выше, чем другой популярной марки, М2. Различные виды медного проката, изготовленного из сплава марки М1, широко используются в криогенных производствах. Благодаря термоустойчивости, его вязкость, прочность и пластические свойства в условиях экстремальных температур не изменяются.
Характеристики сплава М1
Медный сплав М1 соответствует ГОСТу 859 – 2001, бывает твердым и мягким (М1т и М1м), легко обрабатывается давлением и пайкой. Литейные свойства невысокие, поэтому резка и сварка затруднительны.
Влияние примесей в сплаве на свойства меди М1 (в скобочках указано их процентное содержание):
- никель (0,002%), цинк (0,004%), железо (0,005%) и другие элементы, формирующие твердые растворы – снижают тепло- и электропроводность, наличие сурьмы утяжеляет горячую обработку;
- нерастворимые компоненты, такие как висмут (0,001%), свинец (0,005%) – почти не оказывают влияния, но затрудняют обработку давлением;
- включения серы (0,004%) и кислорода (0,05%) уменьшают прочность и электропроводность.
При нормальных условиях, а также в пресной и морской воде сплав обладает антикоррозийной устойчивостью, но портится в аммиачных и сернистых средах. Медь М1 имеет температуру плавления 1083°C, температурный диапазон литья – 1150-1250°C.
Медь м1 м2 м3 отличие — Справочник металлиста
- 1 Медь М1 — цены в Москве. Твердая, мягкая, прессованная, отожженная медь
- 2 Лист медный марок M1, М1Р, М2, М2Р, М3, М3Р. Гост 495-92
- 3 Медная труба (трубка)
- 4 Медь
- 5 Статья о разновидностях и отличиях медного лома, и услугах компании Феникс – С
реализует втулки, круглые прутки, ленты, катанки, листы, трубы, шестигранники, фольгу, шины и проволоку из медного сплава М1 по минимальным ценам в ассортименте.
Все виды изделий производятся согласно соответствующим ГОСТам. При необходимости осуществляем продажу кусками/заготовками. Также мы оказываем сопутствующие услуги по металлообработке, упаковке, хранению и доставке товара в различные регионы России.
Обеспечим Вам комфортный сервис полного цикла. Гибкая система скидок. Свой автопарк — бесплатная доставка по Москве в течение 1 дня. Доставка в регионы за 2-3 суток (бесплатная доставка до терминала транспортной компании).
Медный сплав М1 выпускается по ГОСТ 859-2001. В состав этого материала входит 99,9% меди, а также другие вещества: железо, мышьяк, никель, цинк, сера, свинец, кислород, висмут, олово и сурьма. Это высокопластичный материал, отличающийся хорошей устойчивостью к коррозии. Он хорошо обрабатывается и является частью производственного процесса для многих других металлов.
Ключевыми легирующими элементами здесь выступают никель и фосфор. Медный сплав М1 может быть бескислородным, катодным, раскисленным фосфором или кислородом. При этом по техническим параметрам различают твёрдую и мягкую медь. Используется этот сплав преимущественно в авто- и авиастроении, а также в приборостроении.
Труба медная М1Т | Наличие, размеры и цены уточняйте в каталоге. |
Труба медная М1М (ММ) | Наличие, размеры и цены уточняйте в каталоге. |
Шина медная М1М (ШММ) | Наличие, размеры и цены уточняйте в каталоге. |
Шина медная М1Т (ШМТ) | Наличие, размеры и цены уточняйте в каталоге. |
Проволока медная М1М | Наличие, размеры и цены уточняйте в каталоге. |
Проволока медная М1Т (МТ) | Наличие, размеры и цены уточняйте в каталоге. |
Полоса (шина) медная М1 | Наличие, размеры и цены уточняйте в каталоге. |
Лента медная М1 | Наличие, размеры и цены уточняйте в каталоге. |
Лента медная М1М | Наличие, размеры и цены уточняйте в каталоге. |
Лента медная М1Т | Наличие, размеры и цены уточняйте в каталоге. |
Уточнить информацию по актуальному ассортименту предлагаемых нами изделий из меди М1, Вы можете у наших менеджеров.
Москва, ш. Энтузиастов, д. 56, стр. 44
У этого материала имеется ряд аналогов за рубежом:
- американский сплав C11000;
- английский состав C106;
- итальянская медь Cu-DHP;
- европейская медь Cu-ETP;
- немецкий сплав 2.0090.
Они имеют схожие технические характеристики и могут использоваться для тех же задач, что и марка М1.
Сферы применения
Используется сплав М1 для изготовления токопроводящих деталей, различных прокатных полуфабрикатов. Также сплав задействуется для производства бронзовых составов без содержания олова. Популярен он при производстве криогенного оборудования, а проволока часто используется для изготовления прутков, предназначенных для сварки.
Особенности производства и применение
Медь химического состава, аналогичного отечественной марке М1, производится во многих странах с развитой металлургической промышленностью:
- Япония (стандарт JIS), США – С1100, С1220.
- Евросоюз (стандарт EN) – Cu-ETP.
- Англия (стандарт BS) – С106.
- Франция (стандарт AFNOR) – Cu-B.
- Италия (стандарт UNI) – Cu-DHP.
Несомненным лидером по производству различных сплавов бескислородной меди – аналогов отечественной марки М1 является металлургическая промышленность Германии. В соответствии со стандартами DIN и WNR на заводах цветной металлургии выпускаются три вида сплавов – Ecu57, ECu58, SF-Cu.
Коэффициент трения металла со смазкой составляет 0,011, без смазки – 0,043. Существует две категории сплавов по ГОСТ 1173-2006 по показателям твёрдости по Бринеллю:
твёрдый | HB 10 -1 95МПа |
мягкий | HB 10 -1 55МПа |
В процессе литья необходимо помнить, что линейная усадка М1 составляет 2,1%. Медь плавится при температуре 1083°C, литьё производится в температурном диапазоне 1150-1250°C.
М1 производится в виде литых (слитки горизонтального литья, ГОСТ 193-79) или деформированных (катанка, ТУ 1844-01003292517-2004; лента, ГОСТ 1173-2006; пруток отожжённый и прессованный, ГОСТ 1535-2006; труба, ГОСТ Р 52318-2005) полуфабрикатов. Листовой прокат в обязательном порядке должен подвергаться изгибным испытаниям. Лента толщиной до 5 мм по стандарту должна выдерживать изгиб до соприкосновения сторон. Более толстые листы (6-12 мм) проверяются до достижения параллельности сторон.
Полуфабрикаты, которые производятся методом холодной прокатки, проверяются на изгиб нагретыми до 90°C. Медные холоднодеформированные трубы (мягкие, полутвёрдые, твёрдые) производятся по технологии, которая не оказывает влияния на дальнейшую работоспособность. Они не размораживаются, устойчивы к разрыву при замерзании жидких сред. Трубы большого сечения изготавливаются по технологии прессования.
Сплав М1 применяется в криогенном производстве. Из него изготавливают токопроводники, проволоку, прутки и электроды для автоматической сварки, газовой сварки неответственных соединений чугунных и медных деталей. М1 – основной сплав для производства бронзы высокого качества.
Источник