Как сделать плавный пуск электроинструмента с обычной розетки.

В данной статье мы рассмотрим различные схемы подключения устройств плавного пуска на примере УПП Prostar PRS2.

Софтстартеры выпускаются множеством производителей, и у всех есть свои особенности. Однако существуют общие принципы подключения, справедливые для любой модели УПП.

Все проводники, подключаемые к пускателю, можно разделить на силовые и управляющие. Силовые цепи отвечают за подачу питания. Управляющие цепи – это цепи включения/выключения (коммутации), сигнализации и т. п. Они обеспечивают не только запуск и остановку двигателя, но и защиту софтстартера в случае аварийных ситуаций.

Общая схема подключения устройства плавного пуска Prostar PRS2 имеет следующий вид:

Недостатки электроинструмента и срок службы

Общеизвестно, что далеко не всякий инструмент снабжен подобными схемами плавного пуска. В основном они идут в дорогих моделях известных брендов Bosch, Hilti, DeWalt. Причем как в сетевой линейке, так и в аккумуляторной.

Электроинструмент без такого устройства имеет кучу недостатков:

  • искрение якоря на коллекторе с выгоранием ламелей якоря
  • выгорание щеток и более быстрое их стачивание

  • чаще выходят из строя обмотки ротора и статора

  • токовый бросок в общую электросеть

  • удары шестерней друг о друга и более быстрое их срабатывание

  • опасный рывок при запуске, вырывающий инструмент из рук и повышающий травмоопасность

При работе с торцевой пилой имеющей ПП, диск не будет сбиваться с подготовленной точки реза. Что немаловажно для непрофессиональных столяров.

Если у вас на даче или в доме на начальном этапе строительства еще нет электроэнергии и вы пользуетесь генератором, то рано или поздно поймете, что без БПП (блока плавного пуска) с резкими начальными токами, генератор долго не протянет. Поэтому такая штука способна сберечь не только инструмент, но и аварийные источники питания.

Можно конечно самостоятельно встроить БПП во внутрь той же болгарки или торцовки, однако разбирать технику и ковыряться во внутренностях охота далеко не каждому.

Плюс ко всему прочему, вскрытие нового корпуса влечет за собой потерю гарантии. Поэтому лучшее применение для блока KRRQD12A — это внешнее подключение.

Только имейте в виду, подходит он для коллекторных двигателей. Для асинхронных нужен частотник с другими принципами регулирования.

Данная коробочка рассчитана на ток 12 Ампер.

Есть и более мощная модель на 20А.

Что характерно, габариты у них одинаковые, а разница в цене пару десятков рублей.

Казалось бы лучше взять ее, но для стандартной розетки в 16А более выгоден первый вариант. Не будет желания подключать более мощную нагрузку и тем самым подпалить все контакты.

Мастера самоделкины конечно собирают подобные схемки и своими руками, на основе тиристоров ВТА 12-600 или других, конденсаторов, динистора и парочки мелких резисторов. Примеров схем в интернете можно найти множество.

Но рядовому пользователю инструмента, гораздо проще все это купить в уже готовом компактном корпусе. Заказать подобный блок можно по ссылке отсюда.

Прямой запуск

В электросхеме прямого пуска машина непосредственно подключена к сетевому напряжению питания.

На схеме выше показана характеристика пускового тока при прямом старте. При таком подключении повышение температуры в обмотках машины минимальное.

Подключение осуществляется с помощью контактора (пускателя). В схеме применяется реле перегрузки для защиты электродвигателя. Однако такой метод применим, когда нет ограничений по току.

Во время старта машины пусковой момент ограничивают, чтобы сгладить резкий рывок, вследствие которого могут выйти из строя механические части привода и подсоединенные механизмы.

По этой причине производители крупных электродвигателей запрещают их прямой пуск.

Блоки плавного пуска с тремя проводами

Кстати будьте внимательны, есть похожие устройства, но с тремя проводками. Например XS-12/D3.

Или другие модели внешне похожие на KRRQD.

Но они собраны на несколько другом принципе и их нужно устанавливать после кнопки ПУСК, в самом инструменте. Напряжение на них должно подаваться только в момент замыкания пусковой кнопки болгарки и сразу исчезать после ее отпускания.

Схема подключения на них следующая:

Фаза подается на контакт «А», ноль на «С». Далее фаза выходным проводом управления идет на двигатель (это как раз третий проводок).

Без кнопки такое устройство будет постоянно под напряжением 220В, что не допустимо.

В двухпроводном блоке такого нет, так как подключается он в разрыв цепи, и напряжение (разность потенциалов) к нему прикладывается только в момент пуска и работы инструмента.

Еще один момент — так называемый электрический тормоз или тормозная обмотка на торцовках. С 3-х проводным внешним УПП он может не работать, а вот с 2-х проводной моделью будет.

Как собрать схему регулятора своими руками

Простейший регулятор мощности, подходящий для болгарки, паяльника или лампочки, легко собрать своими руками.

Принципиальная электрическая схема

Для того чтобы собрать простейший регулятор оборотов для болгарки, необходимо приобрести детали, изображённые на этой схеме.

Принципиальная схема регулятора оборотов

  • R1 — резистор, сопротивлением 4,7 кОм;
  • VR1 — подстроечный резистор, 500 кОм;
  • C1 — конденсатор 0,1 мкФ х 400 В;
  • DIAC — симистор (симметричный тиристор) DB3;
  • TRIAC — симистор BT-136/138.

Работа схемы

Подстроечный резистор VR1 изменяет время заряда конденсатора C1. При подаче напряжения на схему, в первый момент времени (первый полупериод входной синусоиды) симисторы DB3 и TRIAC закрыты. Напряжение на выходе равно нулю. Конденсатор C1 заряжается, напряжение на нём возрастает. В определённый момент времени, задаваемый цепочкой R1-VR1, напряжение на конденсаторе превышает порог открытия симистора DB3, симистор открывается. Напряжение с конденсатора передаётся на управляющий электрод симистора TRIAC, который также открывается. Через открытый симистор начинает протекать ток. В начале второго полупериода синусоиды симисторы закрываются до тех пор, пока конденсатор C1 не перезарядится в обратную сторону. Таким образом, на выходе получается импульсный сигнал сложной формы, амплитуда которого зависит от времени работы цепи C1-VR1-R1.

Порядок сборки

Сборка этой схемы не затруднит даже начинающего радиолюбителя. Запчасти доступны, купить их можно в любом магазине. В том числе и выпаять со старых плат. Порядок сборки регулятора на тиристорах следующий:

Изготовление розетки плавного пуска

Самое главное требование для такой розетки — это ее мобильность. Поэтому вам понадобится переноска.

С помощью нее можно будет плавно запускать инструмент в любом месте — в гараже, на даче, при строительстве своего дома на разных участках стройплощадки.

Первым делом переноску нужно разобрать.

Основные провода питания в ней могут быть либо припаяны, либо подсоединены на винтовых зажимах.

В зависимости от этого, также будет происходить и подключение вашей дополнительной розетки. Это должна быть именно дополнительная розетка возле переноски, чтобы иметь возможность одновременно подключать инструмент в разных режимах.

Кстати, если вы по ошибке включите болгарку или циркулярку, имеющие заводской встроенный плавный пуск в розетку, также снабженной таким УПП, то на удивление все будет работать. Единственный момент — получится задержка запуска пилы или оборотов диска на пару секунд, что не очень удобно в работе и без привычки может озадачить.

Вот реальные испытания такого подключения, проведенные одним мастером с ютуб BaRmAgLoT777. Его комментарий после таких опробований на гравере типа Dremel, дреле Bosch, фрезере Makita, циркулярной пиле Интерскол:

Далее для сборки розетки берете многожильный медный провод сечением 2,5мм2 и зачищаете его концы.

После чего необходимо залудить контактную площадку на переноске, куда будет припаиваться этот провод.

Надежно припаиваете жилы кабеля к этим площадкам.

Аккуратно укладываете провода и закрываете удлинитель.

Берете квадратную наружную розетку для установки на внешней поверхности стен, и в ее корпус примеряете блок плавного пуска. Так как он имеет компактные прямоугольные размеры, то должен поместиться туда без особых проблем.

Монтируете и закрепляете корпус розетки на одной площадке с удлинителем.

Блочок ПП подключаете в разрыв любого провода, фазного или нулевого. Не перепутайте, на него не подается одновременно фаза и ноль, т.е. 220В.

Он устанавливается на какой-то один из проводов.

Также для этого БПП, нет никакой разницы с какой стороны сделать вход, а с какой выход. Скрутки пропаиваются и изолируются термоусадкой.

После чего, все внутренности розетки собираются в корпус и остается всю конструкцию закрыть крышкой.

На этом вся переделка переноски и изготовление розетки можно считать завершенной. По времени это займет у вас не более 15 минут.

Как подключить к болгарке регулятор

Для подключения самодельного регулятора мощности не требуется особых знаний, и любой домашний мастер справится с этой задачей. Устанавливается модуль в разрыв одного провода, через который идет питание на болгарку. То есть один провод остается целым, а в разрыв второго впаивается регулятор.

Если места в болгарке очень мало, то регулятор можно разместить снаружи инструмента, как показано на следующем фото.

Также регулятор можно поместить в розетку и использовать ее, чтобы уменьшить обороты не только у болгарки, но и у других электроприборов (дрели, точила, фрезерного или токарного станка по дереву и т.д.). Делается это следующим образом.

  1. Приобретите в магазине электротоваров распределительную коробку (подойдет с размерами 65х65х50 мм).
  2. Также следует купить наружную розетку небольших размеров и сетевой кабель с электрической вилкой.
  3. В боковой стенке распределительной коробки просверлите отверстие для вставки в него регулятора переменного резистора.
  4. Плата заводского регулятора или самодельное устройство размещается внутри распределительной коробки. Все выступающие части в коробке, мешающие монтажу, можно срезать.
  5. Розетку следует закрепить на крышке распределительной коробки, предварительно протянув провода внутрь последней.
  6. На рисунке выше можно увидеть, что провода сетевого кабеля касаются радиатора, который при работе нагревается. Поэтому на него одета трубка из ПВХ. Но лучше, если просверлить для сетевого кабеля отверстие в другом месте, чтобы исключить контакт его с радиатором.

На следующих фото показано, как будет выглядеть готовая розетка, имеющая встроенный регулятор оборотов болгарки, которую можно использовать и для других электроприборов.

Вместо распределительной коробки можно использовать любой пластиковый корпус подходящего размера. Также короб можно изготовить самостоятельно, склеив куски пластика клеевым пистолетом.

Отличия скалярных и векторных преобразователей частоты

Скалярная величина – значение, выраженное одним числом. Несколько значений изображается на шкале. Площадь, длина – это величины скалярные. Векторные величины – кроме числа имеют направление.

Главным методом изменения момента мотора является корректировка частоты и тока. Это ведет к изменению силы поля. Частотники можно настраивать, менять их выходные параметры для своих механизмов. Характеру выходного тока выхода частотного преобразователя можно придать гиперболический, параболический, линейный вид.

Для страгивания с места увесистый груз на механизме, току выхода придают гиперболический вид. Вентиляторы и насосы воды приводятся в работу по параболе, это экономит электричество. Так сконструированы множество частотных преобразователей, называющихся скалярными.

Следующим методом увеличения момента мотора служит применение гармоники выходного тока. Ее вектор вращается в сторону тока главной гармоники, по последовательности прямого вида. Остальные создают вращение в обратную сторону в последовательности обратного вида.

Нейтральный ток выше фазных токов, колебания 3-й гармоники больше следующих гармоник. Этот эффект используется для повышения мощности выхода и повышения момента на моторе. Для управления вращающим моментом применяют силу и частоту тока, а также фазу. Отсюда и пошло название «векторный».

Оптимизировано постоянство вращения в широком диапазоне путем сдвига фаз. Это свойство заключено в двигателе с замкнутым ротором. Поле проходит через ротор, где есть токи, создающие механическую силу. Она вращает вал мотора в сторону поля статора, но ротор отстает на несколько процентов от скорости вращения поля потока. Это скольжение обеспечивает переход электроэнергии в механическую энергию в двигателе асинхронного типа. Если нет скольжения в роторе, нет движущей силы, и нет вращения вала мотора.

Вращающий момент мотора прямо зависит от тока, и обратно пропорционален оборотам двигателя. Эффект от векторных методов небольшой. На небольших скоростях при увеличенном токе электродвигатель перегревается, требует охлаждающей системы. Обладают ли «невекторные» частотные преобразователи постоянным моментом моторного вращения? Асинхронный двигатель обладает свойством изменять вращающий момент по нагрузке вала, то есть, расходует ток, обеспечивающий одинаковый момент вращения и нагрузки.

На наименьших скоростях вращения вала двигателя векторные способы управления являются малоэффективными. Стоимость за свойство «векторности» преобразователя частоты не оправдывает себя, сложности системы уменьшают надежность механизмов. Такие частотные преобразователи нельзя использовать на приводах с несколькими моторами. Преобразователи частоты нужно классифицировать по методу управления током выхода:

  1. С настройкой значений тока. Применяются в приводах общего назначения.
  2. С настройкой тока выхода динамического типа. Применяются в приводах с одним мотором на точных агрегатах техпроцесса. Бывают с обратной связью поля и без нее. Они превосходят частотные преобразователи первого типа, зато сервоприводы превосходят их.

Для конкретных целей для управления механизмами являются электромоторы с собственными управляющими системами. Универсальные механизмы и приводы создать невозможно, так как большая разница в конструкции и в выполняемых задачах. Нужно сконструировать привод механизма, учесть нужный момент мотора в негативном диапазоне частот вращения, а управление значением параметра будет осуществлять регулятор, им оснащены преобразователи скалярного типа.

Для чего он нужен

Если инструмент не оснащен регулятором оборотов, значит он ему не нужен. Угловая шлифмашина, к примеру, всегда используется при полных оборотах, иначе она становится опасной. Для чего такому электроинструменту плавный пуск? Причин немало, ведь резкий старт двигателя той же шлифмашины или электрофуганка вызывает:

  • выгорание щеток и ламелей ротора;
  • токовый удар в электросети;
  • попытка инструмента вырваться из рук, что небезопасно;
  • сильный пусковой удар шестеренок редуктора друг о друга, вызывающий их быстрый износ.

При плавном же пуске ни токового, ни механического удара не произойдет. Двигатель электроинструмента плавно запустится и выйдет на максимальные обороты.

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Двусторонний рез

Довольно часто при креплении листа на профиль в сложных местах требуется выполнить двусторонний рез. Используется такой метод при оформлении оконных проемов, дверных, при необходимости обойти балки и другие сложные конструкции. Чем лучше резать гипсокартон в таком случае? Для начала требуется сделать отверстие прямоугольной либо квадратной формы. Вырезать его можно при помощи такого простейшего инструмента, как ножовка, либо острого ножа. Процесс резки не составляет сложностей:

  • сначала надо нанести на лист разметку при помощи простого карандаша и линейки;
  • с одной стороны лист надо подрезать при помощи ножовки, а с другой, используя нож;
  • теперь гипсокартон надламывается, срезается с одной стороны.

После надо при помощи обдирочного рубанка тщательно обработать кромку, чтобы получить ровные края. Когда лист раскроен, можно закрепить его на требуемом месте при помощи саморезов. Стыки и швы после монтажа шпаклюются, предварительно проклеиваются специальной сеткой.

Чем опасен пусковой ток электродвигателя

При подаче напряжения на обмотку статора скорость вращения ротора равна нулю. Ротор нужно стронуть с места и раскрутить до номинального частоты вращения. На это тратится значительно большая энергия, чем та, что нужна для номинального режима работы.

Под нагрузкой пусковые токи больше, чем на холостом ходу. К весу ротора прибавляется механическое сопротивление вращению от приводимого двигателем в движение механизма. На практике влияние этого фактора стремятся минимизировать. Например, у мощных вентиляторов на момент запуска автоматически закрываются шиберы в воздуховодах.

В момент протекания пускового тока из сети потребляется значительная мощность, расходуемая на выведение электродвигателя на номинальный режим работы. Чем мощнее электромотор, тем большая мощность для разгона ему требуется. Не все электрические сети переносят этот режим без последствий.

Перегрузка питающих линий неизбежно приводит к снижению напряжения в сети. Это не только еще более затрудняет процесс запуска электродвигателей, но и влияет на других потребителей.

Да и сами электродвигатели во время пусковых процессов испытывают повышенные механические и электрические нагрузки. Механические связаны с увеличением вращающего момента на валу. Электрические же, связанные с кратковременным увеличением тока, воздействуют на изоляцию обмоток статора и ротора, контактные соединения и пусковую аппаратуру.

Частотное регулирование

Под частотным регулированием понимание использование частотно-управляемого привода. Данное устройство регулирует частоту вращения ротора электромотора. В конструкцию частотного преобразователя входит инвертор и выпрямитель. К преимуществам запуска двигателя через частотное регулирование относится большой выбор значений для регулировки количества оборотов, увеличение ресурса мотора, максимальный пусковой момент и экономия электрической энергии по сравнению с другими способами запуска мотора.

Недостатки у частотного регулирования также имеются. Это сравнительно высокая цена преобразователей для мощных моторов, а также высокий уровень помех, которые наблюдаются поблизости от этих устройств.

Данные, собираемые при посещении сайта

Персональные данные

Эти данные собираются в целях оказания услуг или продажи товаров, связи с пользователем или иной активности пользователя на сайте, а также, чтобы отправлять пользователям информацию, которую они согласились получать.

Мы не проверяем достоверность оставляемых данных, однако не гарантируем качественного исполнения заказов или обратной связи с нами при некорректных данных.

Данные собираются имеющимися на сайте формами для заполнения (например, регистрации, оформления заказа, подписки, оставления отзыва, обратной связи и иными).

Формы, установленные на сайте, могут передавать данные как напрямую на сайт, так и на сайты сторонних организаций (скрипты сервисов сторонних организаций).

Также данные могут собираться через технологию cookies (куки) как непосредственно сайтом, так и скриптами сервисов сторонних организаций. Эти данные собираются автоматически, отправку этих данных можно запретить, отключив cookies (куки) в браузере, в котором открывается сайт.

Не персональные данные

Кроме персональных данных при посещении сайта собираются не персональные данные, их сбор происходит автоматически веб-сервером, на котором расположен сайт, средствами CMS (системы управления сайтом), скриптами сторонних организаций, установленными на сайте. К данным, собираемым автоматически, относятся: IP адрес и страна его регистрации, имя домена, с которого вы к нам пришли, переходы посетителей с одной страницы сайта на другую, информация, которую ваш браузер предоставляет добровольно при посещении сайта, cookies (куки), фиксируются посещения, иные данные, собираемые счетчиками аналитики сторонних организаций, установленными на сайте.

Эти данные носят неперсонифицированный характер и направлены на улучшение обслуживания клиентов, улучшения удобства использования сайта, анализа посещаемости.

Подготовка к монтажу устройства

Изготовление и применение переноски с маленьким БПП сэкономит деньги на покупку новых электроинструментов, продлив срок службы старых. Для бытовых условий достаточно применить блок на 12А с аббревиатурой KRRQD12A (см. рисунок ниже).

Такое устройство следует применять для пуска и работы коллекторных типов двигателя электроинструмента с мощностью до 2500 Ватт. Купив БПП, следует подобрать удлинитель достаточной для работы длины. Также нужно подготовить отдельную розетку, кусок многожильного мягкого медного провода, инструменты, термоусадки или изоленту. В случае если провода в удлинителе припаяны, а не прикручены на болтовом соединении, понадобятся паяльник, канифоль, припой.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]