ЧПУ станок своими руками на базе arduino. Пошаговая инструкция + видео


Станки с ЧПУ — это компьютеризированные станки с числовым программным управлением, которые могут выполнять определенный набор операций в соответствии с заложенной в них программой. Подобные станки могут управляться с помощью компьютеров (наиболее сложные станки) или микроконтроллеров. Станки с ЧПУ обычно имеют в своем составе как шаговые, так и серводвигатели. К станкам ЧПУ относятся и плоттеры, которые могут рисовать какие-либо объекты по заданной программе.

В этом проекте мы рассмотрим создание самодельного (DIY) плоттера с ЧПУ на основе платы Arduino Uno. Из всех плоттеров, которые можно изготовить самому, этот является одним из самых простых. Наш самодельный плоттер сможет рисовать большинство основных форм, текстов и даже мультфильмов. Он работает примерно по такому же принципу, как и человеческая рука, но намного быстрее и точнее чем может рисовать человек. Подробно процесс функционирования этого плоттера вы можете посмотреть на видео, приведенном в конце статьи.

Работа плоттера с ЧПУ

Для работы плоттера с ЧПУ при построения графиков с ЧПУ требуется 3 оси (ось x, ось y и ось z). Оси x и y работают в унисон для создания 2D-изображения на обычной бумаге. Эти оси (x и y) расположены под углом 90 градусов друг к другу таким образом, что любая точка на плоской поверхности определяется заданным значением x и y. Ось z используется для подъема и опускания пера на плоскую бумагу.

В зависимости от того, какое изображение необходимо нарисовать, компьютер будет генерировать соответствующие координаты и отправлять их на микроконтроллер через USB-порт. Микроконтроллер интерпретирует эти координаты, а затем управляет положением двигателей для создания изображения. В качестве микроконтроллера в данном проекте мы использовали плату Arduino.

Требуемое оборудование

  • Arduino — Как мы уже говорили, нам понадобится Arduino для установки GRBL. В частности, нам нужна плата Arduino на базе Atmega 328, а это означает, что мы можем использовать либо Arduino UNO, либо Nano.
  • Шаговые двигатели. Очевидно, что шаговые двигатели обеспечивают движение машины.
  • Драйверы — для управления шаговыми двигателями нам нужны драйверы, и распространенный выбор, когда дело доходит до небольших станков с ЧПУ DIY (использующих шаговые двигатели NEMA 14 или 17), — это драйверы A4988 или DRV8825.
  • Arduino CNC Shield — для подключения шаговых драйверов к Arduino самый простой способ — использовать Arduino CNC Shield. Он использует все контакты Arduino и обеспечивает простой способ подключения всего, шаговых двигателей, шпинделя / лазера, концевых выключателей, охлаждающего вентилятора и т. д.

Обратите внимание, что это только основные электронные компоненты, которые нам нужны, чтобы понять, как работает станок с ЧПУ.

В качестве примера того, как все должно быть соединено, мы можем взглянуть на одну из машин для резки пенопласта с ЧПУ сделанную своими руками.


Схема сборки станка с ЧПУ GRBL

Здесь вы можете проверить и получить основные электронные компоненты, необходимые для сборки этого станка с ЧПУ:

  • Шаговый двигатель — NEMA 17
  • Шаговый драйвер A4988
  • Arduino CNC Shield
  • Arduino Uno

Главный инструмент этого станка с ЧПУ — это горячая проволока, которая может легко расплавить или прорезать пенополистирол и придать любую форму, которую мы хотим.

Необходимые компоненты

Аппаратные компоненты

  1. Плата Arduino Uno (купить на AliExpress).
  2. Шилд (плата расширения) драйвера двигателей L293D (купить на AliExpress).
  3. Старый HP/Epson принтер. Можно использовать старый компьютерный DVD привод.
  4. Мини сервомотор (купить на AliExpress).
  5. Алюминиевый лист (710mm x 710mm).
  6. Органическое стекло.
  7. Болты и гайки.
  8. Ручка.

Примечание: механическая часть этого проекта может во многом отличаться от того, что вы видите на фотографиях в этой статье. Но какую бы “механику” вы не использовали, убедитесь что в ней есть сервомотор. Мы, к примеру, не смогли найти старый DVD привод, поэтому использовали части от старого принтера для конструирования нашего плоттера.

Инструменты

Отвертка Дрель Режущий инструмент (ножовка) Клей Стендовое устройство

Программное обеспечение

Arduino IDE version 1.6.6 или новее Processing IDE version 3.1.1 или новее (последнюю версию можно скачать здесь) Inkscape version 0.48.5 или новее. (скачать здесь) Grbl controller (опционально)

Что такое Arduino

Прежде всего, стоит разобраться, что такое Arduino.

  • название торговой марки аппаратуры, средств программирования, при помощи которых реально построить модели станков (в том числе, трехосевого), несложные системы автоматики и робототехники;
  • линейка продукции, наличие открытой архитектуры у которой позволит скопировать или дополнить уже существующие конструкции;
  • небольшая плата с собственным процессором и памятью;
  • аппаратная вычислительная платформа или же контроллер;
  • язык программирования, позволяющий разбирать различный софт (условно бесплатное ПО, свежие новости в области IT);
  • так называемый электронный конструктор.

Создавая на Ардуино устройства электроники, способные принимать сигналы от разных цифровых и аналоговых датчиков, подключенных к нему, как к основе. Поэтому в контексте данной статьи, речь будет идти о платах.

Основание для ЧПУ плоттера

Основание нашего плоттера – это база, к которой прикрепляются все элементы конструкции чтобы устройство получилось жестким и в то же время портативным. Для основания нашего плоттера мы использовали алюминиевый лист поскольку он легкий, прочный, его легко сгинать и резать, а еще он не ржавеет (вдруг ваши внуки через много-много лет будут рисовать на этом плоттере).

Дизайн и размеры основания показаны на следующем рисунке (все размеры указаны в мм):

После проведения необходимых операций сгинания и обрезания у нас получилась следующая конструкция:

Преимущества использования Arduino при создании ЧПУ-станков своими руками?

Основные преимущества:

  • небольшая стоимость платы;
  • среда программирования простая и удобная, подходит и для новичков;
  • кросс-платформенность.

Самостоятельно изготовить ЧПУ-станок можно. Это сэкономит довольно много средств, но полностью бесплатно сделать его не получится, так как некоторые части в домашних условиях изготовить невозможно. Но в сравнении с фабричными моделями экономия настолько большая, что это стоит потраченного времени.

  • 06 сентября 2020
  • 7962

Сборка X, Y и Z осей

Для сборки x и y осей мы использовали две опоры (люльки) от принтера. Каждая из этих частей содержит шаговый двигатель, а механизм ременной передачи используется для перемещения картриджа в прямом и обратном направлении.

Для z-оси мы использовали мини сервомотор, который мы прикрепили к y-оси с помощью клея. Этот сервомотор будет использоваться для подъема и опускания ручки (карандаша). Также необходимо сконструировать хороший поддерживающий механизм, который бы позволял свободно поднимать и опускать ручку.

Сборка бюджетного ЧПУ поле А4 на Arduino+RAMPS

Сборка бюджетного ЧПУ поле А4 на Arduino+RAMPS

Ovaday » 31 янв 2015, 20:48

LCD Nokia 5110 . 200 x 1 = 200 Switch SPDT MTS -102 . 30 x 3 = 90

KY-026 IR Flame sensor module . 150 x 1 = 150 KY-008 Laser head sensor module . 140 x 1 = 140 Arduino Starter Kit . 380 x 1 = 380 10pcs 20cm jump wires 1f1f . 40 x 1 = 40 Arduino Mega 2560 R3 . 960 x 1 = 960 RAMPS 1.4 . 640 x 1 = 640 Stepper Motor Driver DRV8825 . 240 x 3 = 720 Flexible Coupler 5x8x25mm . 140 x 3 = 420 Ball Bearings 608ZZ . 30 x 2 = 60 Сумма . 3800 Сумма со скидкой . 3610 + доставка почтой бандеролью 1-го кл. . 270 Итого . 3880

Схема плоттера

Вставьте шилд (плату расширения) драйвера двигателей L293D в плату Arduino. Эта плата расширения может одновременно управлять двумя шаговыми и двумя серводвигателями. Присоедините к ней два шаговых двигателя как показано на рисунке. Соединения “земли” необходимо оставить не соединенными поскольку у нас двигатели биполярного типа.

Также подключите мини сервомотор к разъему servo1. Подайте питание напряжением 7.5V — 9V на порт питания шилда драйвера мотора. Устройство готово к тестированию.

Для чего нужны шилды?

Использование шилдов позволяет значительно расширить функционал фрезера. Чаще всего их делают под форм-фактор платы. Можно одновременно применять и несколько шилдов. Спектр применения весьма широк:

  1. Обеспечение независимой работы от компьютера.
  2. Подключение периферийных устройств.
  3. Вывод информации на периферийные устройства непосредственно с «Ардуино».
  4. Одновременное управление большим количеством двигателей.
  5. Хранение и обработка объемной информации.
  6. Подключение к Wi-Fi.
  7. Подключение антенн мобильной сети.
  8. Воспроизведение музыки на «Ардуино» и др.

ВАЖНО . Во время подключения шилдов необходимо быть осторожным, чтобы не повредить плату «Ардуино».

Как сгенерировать свой собственный G-код

В этом разделе статьи мы рассмотрим как с помощью программного обеспечения Inkscape сгенерировать G-код для надписи HELLO WORLD.

Примечание: Inkscape не умеет сохранять G-коды. Поэтому дополнительно установите вот этот MakerBot Unicorn plugin который позволяет экспортировать изображения в G-коды. Но новые версии Inkscape, возможно, уже умеют сохранять G-коды. Оригинал этой статьи был написан в 2022 году, возможно, с тех пор уже что то изменилось.

Если установка прошла успешно, откройте File menu в Inkscape кликните на «Document Properties» (свойства документа). Сначала измените размеры с px на миллиметры (mm). Также уменьшите ширину и высоту до 90 мм. Теперь закройте это окно. После этого в зоне рисования появится квадрат – именно в нем мы и будем писать наш текст.

Теперь слева в панели инструментов кликните на “create and edit text object tab”. Напишите текст «HELLO WORLD» и установите его необходимую позицию с помощью инструмента, показанного на следующем рисунке.

Кликните text и выберите необходимый вам шрифт. Кликните apply (применить) и закройте.

Теперь кликните на «path» и выберите «object to path». Теперь ваш текст готов к сохранению в виде G-кода. Кликните на file -> save и напишите имя файла «hello world».

Измените тип файла на «MakerBot Unicon G-Code» как показано на следующем рисунке (эта возможность будет вам доступна если вы успешно установили плагин MakerBot Unicorn). Теперь нажмите на «save» и кликните на «ok» в открывшемся окне.

Сохраненный G-код вы можете использовать для рисования на плоттере с помощью выше описанных операций.

Проекты / Модификации

Почему рисунок «вылазит» за край стола или получается слишком мелким?

Довольно часто приходиться видеть как начинающие и не очень ЧПУшники пытаются высчитать масштабы изделия на стадии разработки станка. Пересчитывают градусы поворота мотора , шаг ШВП , длину пробега и еще массу параметров. Между тем существует простой метод добиться истинного масштаба на станке без таких трудоемких процедур. Этой статьей попытаюсь помочь всем энтузиастам ЧПУ станков.

Исходим из того ,что Вы уже определились какая мощность моторов устраивает Вас.

Итак устанавливаете имеющиеся моторы на ось станка

Устанавливаете любое ШВП которое Вы смогли купить или достать.

Если нет ШВП то устанавливаете любой винте «трапеция»

Шаг резьбы винта и угол поворота мотора не имеют значения !

Итак Ваш станок готов , подключен к компьютеру , программа ЧПУ запущена (в нашем случае это МАСН-3)

Рис1 окно настройки двигателей оси

Откройте программу «Блокнот» путь-(Пуск-все программы-стандартные-блокнот)

Читать также: Как переделать амперметр переменного тока в постоянный

Наберите в нем программу

Сохраните программу под любым именем с расширением «txt»

Сохраняйте на «Рабочий стол» для быстрого поиска

Загрузите программу в МАСН-3 (Файл-Открыть Gкоды).

Коснитесь ей заготовки с небольшим заглублением

Обнулите все координаты

Запустите написанную вами программу.

Станок начертит отрезок длинной 50мм

Замерьте полученный размер отрезка и поделите полученное число на число в окне программы МАСН-3 по пути ->«Шагединицы» в окне по адресу «Конфигурации» далее «Настройка двигателей»

(Первое слева снизу окно подписано «»)

число шагов на 1мм перемещения станка

Разделите это число на 50 (длинна вашего отрезка) и полученное число внесите

Отфрезеруйте отрезок еще раз отрезок и проверьте результат, при необходимости повторить настройки.

Пример

Выполнили файл «отрезок» длинна которого задана 50 мм.

Загрузили в МАСН-3

Получили на станке размер отрезка равным 55 мм.

Нужно привести его к 50 см (так как мы его задали изначально)

Открываем «Конфигурации» далее «Настройка двигателей» в окне «Шагединицы» видим число например 2000

Где 2000-имеющееся число в графе «Шагединицы» .

55 — полученный результат на станке (в мм).

36,36 = 1 шагу станка (1мм)

1818 = 50 шагам станка (50мм)

1818 — Это число вписываем в место 2000 в таблицу

Точная подгонка

Начертили на станке файл «отрезок» после корректировок проведенных выше.

1818 50,5 = 39,60

39,60 х 50 = 1980—Вписываем это число в таблицу

Вот и все Успехов !

Контроллер GRBL

После того как вы сгенерировали G-код с помощью Inkscape может возникнуть необходимость в проверке того, укладываются ли он в заданные ограничения (по возможности рисования).

Ограничения по рисованию определяются в следующих строчках кода нашей программы для Arduino:

В следующем окне GRBL контроллера можно проверить не выходит ли изображение на сгенерированном нами G-коде за пределы рисования, указанные в программе для Arduino. Если какая то часть изображения будет выходить за эти ограничения, то она не будет нарисована.

В нашем примере значения x и y изменяются в диапазоне от 0 до 40 мм. Но поскольку мы сконструировали плоттер с большей зоной рисования, то мы изменили максимальную границу с 40 до 60 мм.

Поэтому после того как вы нарисовали G-код в Inkscape желательно перед загрузкой его в плату Arduino проверять его с помощью программы GRBL не выходит ли он за пределы области рисования. Если выходит, то просто измените его размеры в Inkscape.

Как сделать ЧПУ-станок для выжигания на различных материалах?

Станок для выжигания работает при помощи лазера, который фокусирует луч на поверхности материала. Обычно фокусная не более 0,001 дюйма.

Принцип изготовления и прошивки такой же, как и при создании фрезера. Только вместо фрезера используют лазер мощностью от 5,5 ватт.

При правильной настройке скорость работы лазерного станка для выжигания составляет 10 метров в минуту. Ее можно увеличить, если управлять работой устройства с ноутбука, убрав LPT-кабель.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]